Address Details
contract

0x7D8E73deafDBAfc98fDBe7974168cFA6d8B9AE0C

Contract Name
Airgrab
Creator
0xee6ce2–c8cf5a at 0x0e7766–034f66
Balance
0 CELO ( )
Locked CELO Balance
0.00 CELO
Voting CELO Balance
0.00 CELO
Pending Unlocked Gold
0.00 CELO
Tokens
Fetching tokens...
Transactions
461 Transactions
Transfers
480 Transfers
Gas Used
276,127,230
Last Balance Update
27158824
This contract has been partially verified via Sourcify. View contract in Sourcify repository
Contract name:
Airgrab




Optimization enabled
true
Compiler version
v0.8.18+commit.87f61d96




Optimization runs
10000
EVM Version
paris




Verified at
2024-06-04T15:02:51.767785Z

contracts/governance/Airgrab.sol

// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.18;

import { MerkleProof } from "openzeppelin-contracts-next/contracts/utils/cryptography/MerkleProof.sol";
import { IERC20 } from "openzeppelin-contracts-next/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "openzeppelin-contracts-next/contracts/token/ERC20/utils/SafeERC20.sol";
import { ECDSA } from "openzeppelin-contracts-next/contracts/utils/cryptography/ECDSA.sol";
import { SignatureChecker } from "openzeppelin-contracts-next/contracts/utils/cryptography/SignatureChecker.sol";
import { Strings } from "openzeppelin-contracts-next/contracts/utils/Strings.sol";
import { ReentrancyGuard } from "openzeppelin-contracts-next/contracts/security/ReentrancyGuard.sol";

import { ILocking } from "./locking/interfaces/ILocking.sol";

/**
 * @title Airgrab
 * @author Mento Labs
 * @notice This contract implements a token airgrab gated by a MerkleTree and KYC using fractal.
 * The airgrab also forces claimers to immediately lock their tokens as veTokens for a
 * predetermined period.
 */
contract Airgrab is ReentrancyGuard {
  using SafeERC20 for IERC20;

  uint32 public constant MAX_CLIFF_PERIOD = 103;
  uint32 public constant MAX_SLOPE_PERIOD = 104;

  /**
   * @notice Emitted when tokens are claimed
   * @param claimer The account claiming the tokens
   * @param amount The amount of tokens being claimed
   * @param lockId The ID of the resulting veMento lock
   */
  event TokensClaimed(address indexed claimer, uint256 amount, uint256 lockId);

  /**
   * @notice Emitted when tokens are drained
   * @param token The token addresses that was drained
   * @param amount The amount drained
   */
  event TokensDrained(address indexed token, uint256 amount);

  /// @notice The root of the merkle tree.
  bytes32 public immutable root;
  /// @notice The Fractal Credential message signer for KYC/KYB.
  address public immutable fractalSigner;
  /// @notice The Fractal Credential maximum age in seconds
  uint256 public immutable fractalMaxAge;
  /// @notice The timestamp when the airgrab ends.
  uint256 public immutable endTimestamp;
  /// @notice The slope period that the airgrab will be locked for.
  uint32 public immutable slopePeriod;
  /// @notice The cliff period that the airgrab will be locked for.
  uint32 public immutable cliffPeriod;
  /// @notice The token in the airgrab.
  IERC20 public immutable token;
  /// @notice The locking contract for veToken.
  ILocking public immutable locking;
  /// @notice The Mento Treasury address where unclaimed tokens will be refunded to.
  address payable public immutable mentoTreasury;

  /// @notice The map of addresses that have claimed
  mapping(address => bool) public claimed;

  /**
   * @dev Check if the account has a valid kyc signature.
   * See: https://docs.developer.fractal.id/fractal-credentials-api
   *      https://github.com/trustfractal/credentials-api-verifiers
   * @notice This function checks the kyc signature with the data provided.
   * @param account The address of the account to check.
   * @param proof The kyc proof for the account.
   * @param validUntil The kyc proof valid until timestamp.
   * @param approvedAt The kyc proof approved at timestamp.
   * @param fractalId The kyc proof fractal id.
   */
  modifier hasValidKyc(
    address account,
    bytes memory proof,
    uint256 validUntil,
    uint256 approvedAt,
    string memory fractalId
  ) {
    require(block.timestamp < validUntil, "Airgrab: KYC no longer valid");
    require(fractalMaxAge == 0 || block.timestamp < approvedAt + fractalMaxAge, "Airgrab: KYC not recent enough");
    string memory accountString = Strings.toHexString(uint256(uint160(account)), 20);

    bytes32 signedMessageHash = ECDSA.toEthSignedMessageHash(
      abi.encodePacked(
        accountString,
        ";",
        fractalId,
        ";",
        Strings.toString(approvedAt),
        ";",
        Strings.toString(validUntil),
        ";",
        // ISO 3166-1 alpha-2 country codes
        // DRC, CUBA, GB, IRAN, DPKR, MALI, MYANMAR, SOUTH SUDAN, SYRIA, US, YEMEN
        "level:plus+liveness;citizenship_not:;residency_not:cd,cu,gb,ir,kp,ml,mm,ss,sy,us,ye"
      )
    );

    require(SignatureChecker.isValidSignatureNow(fractalSigner, signedMessageHash, proof), "Airgrab: Invalid KYC");

    _;
  }

  /**
   * @dev Check if the account can claim
   * @notice This modifier checks if the airgrab is still active,
   * if the account hasn't already claimed and if it's included
   * in the MerkleTree.
   * @param account The address of the account to check.
   * @param amount The amount of tokens to be claimed.
   * @param merkleProof The merkle proof for the account.
   */
  modifier canClaim(
    address account,
    uint256 amount,
    bytes32[] calldata merkleProof
  ) {
    require(block.timestamp <= endTimestamp, "Airgrab: finished");
    require(!claimed[account], "Airgrab: already claimed");
    bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(account, amount))));
    require(MerkleProof.verify(merkleProof, root, leaf), "Airgrab: not in tree");
    _;
  }

  /**
   * @dev Constructor for the Airgrab contract.
   * @notice It checks and configures all immutable params
   * @param root_ The root of the merkle tree.
   * @param fractalSigner_ The Fractal message signer for KYC/KYB.
   * @param fractalMaxAge_ The Fractal Credential maximum age in seconds.
   * @param endTimestamp_ The timestamp when the airgrab ends.
   * @param cliffPeriod_ The cliff period that the airgrab will be locked for.
   * @param slopePeriod_ The slope period that the airgrab will be locked for.
   * @param token_ The token address in the airgrab.
   * @param locking_ The locking contract for veToken.
   * @param mentoTreasury_ The Mento Treasury address where unclaimed tokens will be refunded to.
   */
  constructor(
    bytes32 root_,
    address fractalSigner_,
    uint256 fractalMaxAge_,
    uint256 endTimestamp_,
    uint32 cliffPeriod_,
    uint32 slopePeriod_,
    address token_,
    address locking_,
    address payable mentoTreasury_
  ) {
    require(root_ != bytes32(0), "Airgrab: invalid root");
    require(fractalSigner_ != address(0), "Airgrab: invalid fractal issuer");
    require(endTimestamp_ > block.timestamp, "Airgrab: invalid end timestamp");
    require(cliffPeriod_ <= MAX_CLIFF_PERIOD, "Airgrab: cliff period too large");
    require(slopePeriod_ <= MAX_SLOPE_PERIOD, "Airgrab: slope period too large");
    require(token_ != address(0), "Airgrab: invalid token");
    require(locking_ != address(0), "Airgrab: invalid locking");
    require(mentoTreasury_ != address(0), "Airgrab: invalid Mento Treasury");

    root = root_;
    fractalSigner = fractalSigner_;
    fractalMaxAge = fractalMaxAge_;
    endTimestamp = endTimestamp_;
    cliffPeriod = cliffPeriod_;
    slopePeriod = slopePeriod_;
    token = IERC20(token_);
    locking = ILocking(locking_);
    mentoTreasury = mentoTreasury_;

    require(token.approve(locking_, type(uint256).max), "Airgrab: approval failed");
  }

  /**
   * @dev Allows `msg.sender` to claim `amount` tokens if the merkle proof and kyc is valid.
   * @notice This function can be called by anybody, but the (msg.sender, amount) pair
   * must be in the merkle tree, has to not have claimed yet, and must have
   * an associated KYC signature from Fractal. And the airgrab must not have ended.
   * The tokens will be locked for the cliff and slope configured at the contract level.
   * @param amount The amount of tokens to be claimed.
   * @param delegate The address of the account that gets voting power delegated
   * @param merkleProof The merkle proof for the account.
   * @param fractalProof The Fractal KYC proof for the account.
   * @param fractalProofValidUntil The Fractal KYC proof valid until timestamp.
   * @param fractalProofApprovedAt The Fractal KYC proof approved at timestamp.
   * @param fractalId The Fractal KYC ID.
   */
  function claim(
    uint96 amount,
    address delegate,
    bytes32[] calldata merkleProof,
    bytes calldata fractalProof,
    uint256 fractalProofValidUntil,
    uint256 fractalProofApprovedAt,
    string memory fractalId
  )
    external
    hasValidKyc(msg.sender, fractalProof, fractalProofValidUntil, fractalProofApprovedAt, fractalId)
    canClaim(msg.sender, amount, merkleProof)
    nonReentrant
  {
    require(token.balanceOf(address(this)) >= amount, "Airgrab: insufficient balance");

    claimed[msg.sender] = true;
    uint256 lockId = locking.lock(msg.sender, delegate, amount, slopePeriod, cliffPeriod);
    emit TokensClaimed(msg.sender, amount, lockId);
  }

  /**
   * @dev Allows the Mento Treasury to reclaim any tokens after the airgrab has ended.
   * @notice This function can only be called after the airgrab has ended.
   * @param tokenToDrain Token is parameterized in case the contract has been sent
   *  tokens other than the airgrab token.
   */
  function drain(address tokenToDrain) external nonReentrant {
    require(block.timestamp > endTimestamp, "Airgrab: not finished");
    uint256 balance = IERC20(tokenToDrain).balanceOf(address(this));
    require(balance > 0, "Airgrab: nothing to drain");
    IERC20(tokenToDrain).safeTransfer(mentoTreasury, balance);
    emit TokensDrained(tokenToDrain, balance);
  }
}
        

/ILocking.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;

/**
 * @title ILocking
 * @notice Interface for the Locking contract
 */

interface ILocking {
  /**
   * @notice Locks a specified amount of tokens for a given period
   * @param account Account for which tokens are being locked
   * @param delegate Address that will receive the voting power from the locked tokens
   * If address(0) passed, voting power will be lost
   * @param amount Amount of tokens to lock
   * @param slope Period over which the tokens will unlock
   * @param cliff Initial period during which tokens remain locked and do not start unlocking
   * @return Id for the created lock
   */
  function lock(
    address account,
    address delegate,
    uint96 amount,
    uint32 slope,
    uint32 cliff
  ) external returns (uint256);
}
          

/Address.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
          

/Strings.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}
          

/math/Math.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}
          

/ERC20/IERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}
          

/IERC1271.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
          

/ReentrancyGuard.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}
          

/cryptography/ECDSA.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}
          

/ERC20/utils/SafeERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
          

/cryptography/MerkleProof.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
          

/cryptography/SignatureChecker.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";
import "../Address.sol";
import "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Gnosis Safe.
 *
 * _Available since v4.1._
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
        if (error == ECDSA.RecoverError.NoError && recovered == signer) {
            return true;
        }

        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
        );
        return (success &&
            result.length == 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}
          

/ERC20/extensions/draft-IERC20Permit.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
          

Compiler Settings

{"viaIR":true,"remappings":["celo-foundry/=lib/celo-foundry/src/","contracts/=contracts/","ds-test/=lib/celo-foundry/lib/forge-std/lib/ds-test/src/","forge-std-next/=lib/forge-std-next/src/","forge-std/=lib/celo-foundry/lib/forge-std/src/","openzeppelin-contracts-next/=lib/openzeppelin-contracts-next/","openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/","openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/","openzeppelin-solidity/=lib/openzeppelin-contracts/","safe-contracts/=lib/safe-contracts/","test/=test/"],"optimizer":{"runs":10000,"enabled":true},"metadata":{"bytecodeHash":"none"},"libraries":{},"evmVersion":"paris","compilationTarget":{"contracts/governance/Airgrab.sol":"Airgrab"}}
              

Contract ABI

[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"bytes32","name":"root_","internalType":"bytes32"},{"type":"address","name":"fractalSigner_","internalType":"address"},{"type":"uint256","name":"fractalMaxAge_","internalType":"uint256"},{"type":"uint256","name":"endTimestamp_","internalType":"uint256"},{"type":"uint32","name":"cliffPeriod_","internalType":"uint32"},{"type":"uint32","name":"slopePeriod_","internalType":"uint32"},{"type":"address","name":"token_","internalType":"address"},{"type":"address","name":"locking_","internalType":"address"},{"type":"address","name":"mentoTreasury_","internalType":"address payable"}]},{"type":"event","name":"TokensClaimed","inputs":[{"type":"address","name":"claimer","internalType":"address","indexed":true},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false},{"type":"uint256","name":"lockId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"TokensDrained","inputs":[{"type":"address","name":"token","internalType":"address","indexed":true},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"uint32","name":"","internalType":"uint32"}],"name":"MAX_CLIFF_PERIOD","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint32","name":"","internalType":"uint32"}],"name":"MAX_SLOPE_PERIOD","inputs":[]},{"type":"function","stateMutability":"nonpayable","name":"claim","inputs":[{"type":"uint96","name":"amount","internalType":"uint96"},{"type":"address","name":"delegate","internalType":"address"},{"type":"bytes32[]","name":"merkleProof","internalType":"bytes32[]"},{"type":"bytes","name":"fractalProof","internalType":"bytes"},{"type":"uint256","name":"fractalProofValidUntil","internalType":"uint256"},{"type":"uint256","name":"fractalProofApprovedAt","internalType":"uint256"},{"type":"string","name":"fractalId","internalType":"string"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"claimed","inputs":[{"type":"address","name":"","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint32","name":"","internalType":"uint32"}],"name":"cliffPeriod","inputs":[]},{"type":"function","stateMutability":"nonpayable","name":"drain","inputs":[{"type":"address","name":"tokenToDrain","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"endTimestamp","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"fractalMaxAge","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"fractalSigner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract ILocking"}],"name":"locking","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address payable"}],"name":"mentoTreasury","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"root","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint32","name":"","internalType":"uint32"}],"name":"slopePeriod","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract IERC20"}],"name":"token","inputs":[]}]
              

Contract Creation Code

Verify & Publish
0x6101a0604081815234620004b157819062001c0f8038038091620000248286620004b6565b843961012092839181010312620004b1578251602062000046818601620004f0565b92808601519160608701516200005f6080890162000505565b6200006d60a08a0162000505565b906200007c60c08b01620004f0565b926200008b60e08c01620004f0565b6101009b8c0151996001600160a01b03808c169a929992908b8d03620004b1576000976001895582156200046d5781841615620004295742861115620003e55763ffffffff606781891611620003a1576068908916116200035d5781169a8b156200031957169a8b15620002d55715620002915760805260a05260c05260e05288528852808261014095808752604461016098808a526101809a8b528751958693849263095ea7b360e01b8452600484015260001960248401525af1918215620002855781926200023d575b505015620001fb575051936116f7958662000518873960805186818161043f0152610a6c015260a05186818161048f01526108c7015260c0518681816106970152611137015260e0518681816101340152818161053301526108f20152518581816105730152610bc2015251848181610be901526110fd01525183818160e60152610ae1015251828181610c2d015261104f0152518181816101f901526110a00152f35b606491519062461bcd60e51b82526004820152601860248201527f416972677261623a20617070726f76616c206661696c656400000000000000006044820152fd5b9091508281813d83116200027d575b620002588183620004b6565b81010312620002795751908115158203620002765750388062000157565b80fd5b5080fd5b503d6200024c565b508351903d90823e3d90fd5b885162461bcd60e51b815260048101899052601f60248201527f416972677261623a20696e76616c6964204d656e746f205472656173757279006044820152606490fd5b895162461bcd60e51b8152600481018a9052601860248201527f416972677261623a20696e76616c6964206c6f636b696e6700000000000000006044820152606490fd5b8a5162461bcd60e51b8152600481018b9052601660248201527f416972677261623a20696e76616c696420746f6b656e000000000000000000006044820152606490fd5b8a5162461bcd60e51b8152600481018b9052601f60248201527f416972677261623a20736c6f706520706572696f6420746f6f206c61726765006044820152606490fd5b8b5162461bcd60e51b8152600481018c9052601f60248201527f416972677261623a20636c69666620706572696f6420746f6f206c61726765006044820152606490fd5b8a5162461bcd60e51b8152600481018b9052601e60248201527f416972677261623a20696e76616c696420656e642074696d657374616d7000006044820152606490fd5b8a5162461bcd60e51b8152600481018b9052601f60248201527f416972677261623a20696e76616c6964206672616374616c20697373756572006044820152606490fd5b8a5162461bcd60e51b8152600481018b9052601560248201527f416972677261623a20696e76616c696420726f6f7400000000000000000000006044820152606490fd5b600080fd5b601f909101601f19168101906001600160401b03821190821017620004da57604052565b634e487b7160e01b600052604160045260246000fd5b51906001600160a01b0382168203620004b157565b519063ffffffff82168203620004b15756fe608080604052600436101561001357600080fd5b60003560e01c9081630b219c6314611121575080632f661946146110e057806341966664146110c4578063425e705e1461107357806358ad5a8b146110225780635dff1c2a14610597578063757dc92d14610556578063a85adeab1461051b578063aad83ff2146104ff578063c884ef83146104b3578063d934bcc014610462578063ebf0c71714610427578063ece531321461010f5763fc0c546a146100b957600080fd5b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b600080fd5b3461010a5760208060031936011261010a5761012961115a565b90610132611232565b7f00000000000000000000000000000000000000000000000000000000000000004211156103e3576040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff928316928282602481875afa9182156103d7576000926103a8575b5081156103645761029d906000806040519261025384610245888a8301947fa9059cbb0000000000000000000000000000000000000000000000000000000086527f000000000000000000000000000000000000000000000000000000000000000016602484016020909392919373ffffffffffffffffffffffffffffffffffffffff60408201951681520152565b03601f198101865285611199565b604051936102608561117d565b8785527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656488860152519082895af1610296611287565b90866112b7565b8051806102d7575b847f7ca3046ca99d7152bf8cb59d68d9a4f131c6b0dadfd2307f65609db067d5259a8585604051908152a26001600055005b8184918101031261010a5782015180159081150361010a576102fa5783806102a5565b6084826040519062461bcd60e51b82526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b6064836040519062461bcd60e51b82526004820152601960248201527f416972677261623a206e6f7468696e6720746f20647261696e000000000000006044820152fd5b9091508281813d83116103d0575b6103c08183611199565b8101031261010a575190846101b6565b503d6103b6565b6040513d6000823e3d90fd5b6064906040519062461bcd60e51b82526004820152601560248201527f416972677261623a206e6f742066696e697368656400000000000000000000006044820152fd5b3461010a57600060031936011261010a5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461010a57602060031936011261010a5773ffffffffffffffffffffffffffffffffffffffff6104e161115a565b166000526001602052602060ff604060002054166040519015158152f35b3461010a57600060031936011261010a57602060405160688152f35b3461010a57600060031936011261010a5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461010a57600060031936011261010a57602060405163ffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461010a5760e060031936011261010a576004356bffffffffffffffffffffffff8116810361010a576024359073ffffffffffffffffffffffffffffffffffffffff8216820361010a5767ffffffffffffffff806044351161010a5736602360443501121561010a5780604435600401351161010a573660246044356004013560051b60443501011161010a5760643581811161010a573660238201121561010a5780600401359082821161010a57366024838301011161010a5760c4359083821161010a573660238301121561010a5761067f61068a9236906024816004013591016111d8565b9260243692016111d8565b90608435421015610fde577f00000000000000000000000000000000000000000000000000000000000000008015908115610fc7575b5015610f83573360405193606085019085821090821117610f5457604052602a84526040366020860137835115610f255760306020850153835160011015610f25576078602185015360295b60018111610eb15750610e6d576108eb92610850607761072d60a435611378565b610738608435611378565b946040519586926020610754818601988981519384920161120f565b8401927f3b000000000000000000000000000000000000000000000000000000000000009384602082015261079382518093602060218501910161120f565b018360218201526107ae82518093602060228501910161120f565b018260228201526107c982518093602060238501910161120f565b019060238201527f6c6576656c3a706c75732b6c6976656e6573733b636974697a656e736869705f60248201527f6e6f743a3b7265736964656e63795f6e6f743a63642c63752c67622c69722c6b60448201527f702c6d6c2c6d6d2c73732c73792c75732c7965000000000000000000000000006064820152036057810185520183611199565b6108c2603a61085f8451611378565b936040519384916108b360208401977f19457468657265756d205369676e6564204d6573736167653a0a00000000000089526108a4815180926020898901910161120f565b8401915180938684019061120f565b0103601a810184520182611199565b5190207f000000000000000000000000000000000000000000000000000000000000000061150a565b15610e29577f00000000000000000000000000000000000000000000000000000000000000004211610de55733600052600160205260ff60406000205416610da1576040805133602082019081526bffffffffffffffffffffffff84169282019290925261096681606081015b03601f198101835282611199565b51902060405160208101918252602081526109808161117d565b5190206040519061099d60206044356004013560051b0183611199565b60443560048101358352602401602083015b60246044356004013560051b60443501018210610d91575050916000925b8251841015610a685760208460051b8401015190818110600014610a575760005260205260406000205b927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610a2857600101926109cd565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b9060005260205260406000206109f7565b84907f000000000000000000000000000000000000000000000000000000000000000003610d4d57610a98611232565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa9081156103d757600091610d1b575b506bffffffffffffffffffffffff831611610cd757336000526001602052604060002060017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0082541617905573ffffffffffffffffffffffffffffffffffffffff604051917f748bb5e80000000000000000000000000000000000000000000000000000000083523360048401521660248201526bffffffffffffffffffffffff8216604482015263ffffffff807f00000000000000000000000000000000000000000000000000000000000000001660648301527f000000000000000000000000000000000000000000000000000000000000000016608482015260208160a481600073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165af19081156103d757600091610ca5575b506bffffffffffffffffffffffff6040519216825260208201527f9923b4306c6c030f2bdfbf156517d5983b87e15b96176da122cd4f2effa4ba7b60403392a26001600055005b90506020813d602011610ccf575b81610cc060209383611199565b8101031261010a575182610c5e565b3d9150610cb3565b606460405162461bcd60e51b815260206004820152601d60248201527f416972677261623a20696e73756666696369656e742062616c616e63650000006044820152fd5b90506020813d602011610d45575b81610d3660209383611199565b8101031261010a575183610b12565b3d9150610d29565b606460405162461bcd60e51b815260206004820152601460248201527f416972677261623a206e6f7420696e20747265650000000000000000000000006044820152fd5b81358152602091820191016109af565b606460405162461bcd60e51b815260206004820152601860248201527f416972677261623a20616c726561647920636c61696d656400000000000000006044820152fd5b606460405162461bcd60e51b815260206004820152601160248201527f416972677261623a2066696e69736865640000000000000000000000000000006044820152fd5b606460405162461bcd60e51b815260206004820152601460248201527f416972677261623a20496e76616c6964204b59430000000000000000000000006044820152fd5b606460405162461bcd60e51b815260206004820152602060248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152fd5b906010600f82161015610f25578451821015610f25577f3031323334353637383961626364656600000000000000000000000000000000600f82161a6020838701015360041c908015610a28577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0161070c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b606460405162461bcd60e51b815260206004820152601e60248201527f416972677261623a204b5943206e6f7420726563656e7420656e6f75676800006044820152fd5b905060a435908101809111610a28574210866106c0565b606460405162461bcd60e51b815260206004820152601c60248201527f416972677261623a204b5943206e6f206c6f6e6765722076616c6964000000006044820152fd5b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461010a57600060031936011261010a57602060405160678152f35b3461010a57600060031936011261010a57602060405163ffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461010a57600060031936011261010a576020907f00000000000000000000000000000000000000000000000000000000000000008152f35b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361010a57565b6040810190811067ffffffffffffffff821117610f5457604052565b90601f601f19910116810190811067ffffffffffffffff821117610f5457604052565b67ffffffffffffffff8111610f5457601f01601f191660200190565b9291926111e4826111bc565b916111f26040519384611199565b82948184528183011161010a578281602093846000960137010152565b60005b8381106112225750506000910152565b8181015183820152602001611212565b600260005414611243576002600055565b606460405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152fd5b3d156112b2573d90611298826111bc565b916112a66040519384611199565b82523d6000602084013e565b606090565b9192901561131857508151156112cb575090565b3b156112d45790565b606460405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b82519091501561132b5750805190602001fd5b61134f9060405191829162461bcd60e51b8352602060048401526024830190611353565b0390fd5b90601f19601f6020936113718151809281875287808801910161120f565b0116010190565b806000917a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000808210156114fc575b506d04ee2d6d415b85acef8100000000808310156114ed575b50662386f26fc10000808310156114de575b506305f5e100808310156114cf575b50612710808310156114c0575b5060648210156114b0575b600a809210156114a6575b60019081602181860195601f1961142d611417896111bc565b986114256040519a8b611199565b808a526111bc565b01366020890137860101905b611445575b5050505090565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff849101917f30313233343536373839616263646566000000000000000000000000000000008282061a8353049182156114a157919082611439565b61143e565b91600101916113fe565b91906064600291049101916113f3565b600491939204910191386113e8565b600891939204910191386113db565b601091939204910191386113cc565b602091939204910191386113ba565b6040935081049150386113a1565b90916115168184611616565b60058110156115e7571590816115c4575b506115bc57600091829160405161157b8161095860208201947f1626ba7e00000000000000000000000000000000000000000000000000000000998a87526024840152604060448401526064830190611353565b51915afa90611588611287565b826115b0575b8261159857505090565b90915060208180518101031261010a57602001511490565b8051602014925061158e565b505050600190565b905073ffffffffffffffffffffffffffffffffffffffff80841691161438611527565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b90604181511460001461164457611640916020820151906060604084015193015160001a9061164e565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083116116de5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156116d157815173ffffffffffffffffffffffffffffffffffffffff8116156116cb579190565b50600190565b50604051903d90823e3d90fd5b5050505060009060039056fea164736f6c6343000812000a1c598bb5ad0b99c0f07235c1bd7327884bf9a74c9454c3d2a937fbe8336d071b000000000000000000000000acd08d6714adba531beff582e6fd5da1afd6bc650000000000000000000000000000000000000000000000000000000000ed4e000000000000000000000000000000000000000000000000000000000066b65abd000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000680000000000000000000000007ff62f59e3e89ea34163ea1458eebcc81177cfb6000000000000000000000000001bb66636dcd149a1a2ba8c50e408bddd80279c000000000000000000000000890db8a597940165901372dd7db61c9f246e2147

Deployed ByteCode

0x608080604052600436101561001357600080fd5b60003560e01c9081630b219c6314611121575080632f661946146110e057806341966664146110c4578063425e705e1461107357806358ad5a8b146110225780635dff1c2a14610597578063757dc92d14610556578063a85adeab1461051b578063aad83ff2146104ff578063c884ef83146104b3578063d934bcc014610462578063ebf0c71714610427578063ece531321461010f5763fc0c546a146100b957600080fd5b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007ff62f59e3e89ea34163ea1458eebcc81177cfb6168152f35b600080fd5b3461010a5760208060031936011261010a5761012961115a565b90610132611232565b7f0000000000000000000000000000000000000000000000000000000066b65abd4211156103e3576040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff928316928282602481875afa9182156103d7576000926103a8575b5081156103645761029d906000806040519261025384610245888a8301947fa9059cbb0000000000000000000000000000000000000000000000000000000086527f000000000000000000000000890db8a597940165901372dd7db61c9f246e214716602484016020909392919373ffffffffffffffffffffffffffffffffffffffff60408201951681520152565b03601f198101865285611199565b604051936102608561117d565b8785527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656488860152519082895af1610296611287565b90866112b7565b8051806102d7575b847f7ca3046ca99d7152bf8cb59d68d9a4f131c6b0dadfd2307f65609db067d5259a8585604051908152a26001600055005b8184918101031261010a5782015180159081150361010a576102fa5783806102a5565b6084826040519062461bcd60e51b82526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b6064836040519062461bcd60e51b82526004820152601960248201527f416972677261623a206e6f7468696e6720746f20647261696e000000000000006044820152fd5b9091508281813d83116103d0575b6103c08183611199565b8101031261010a575190846101b6565b503d6103b6565b6040513d6000823e3d90fd5b6064906040519062461bcd60e51b82526004820152601560248201527f416972677261623a206e6f742066696e697368656400000000000000000000006044820152fd5b3461010a57600060031936011261010a5760206040517f1c598bb5ad0b99c0f07235c1bd7327884bf9a74c9454c3d2a937fbe8336d071b8152f35b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000acd08d6714adba531beff582e6fd5da1afd6bc65168152f35b3461010a57602060031936011261010a5773ffffffffffffffffffffffffffffffffffffffff6104e161115a565b166000526001602052602060ff604060002054166040519015158152f35b3461010a57600060031936011261010a57602060405160688152f35b3461010a57600060031936011261010a5760206040517f0000000000000000000000000000000000000000000000000000000066b65abd8152f35b3461010a57600060031936011261010a57602060405163ffffffff7f0000000000000000000000000000000000000000000000000000000000000068168152f35b3461010a5760e060031936011261010a576004356bffffffffffffffffffffffff8116810361010a576024359073ffffffffffffffffffffffffffffffffffffffff8216820361010a5767ffffffffffffffff806044351161010a5736602360443501121561010a5780604435600401351161010a573660246044356004013560051b60443501011161010a5760643581811161010a573660238201121561010a5780600401359082821161010a57366024838301011161010a5760c4359083821161010a573660238301121561010a5761067f61068a9236906024816004013591016111d8565b9260243692016111d8565b90608435421015610fde577f0000000000000000000000000000000000000000000000000000000000ed4e008015908115610fc7575b5015610f83573360405193606085019085821090821117610f5457604052602a84526040366020860137835115610f255760306020850153835160011015610f25576078602185015360295b60018111610eb15750610e6d576108eb92610850607761072d60a435611378565b610738608435611378565b946040519586926020610754818601988981519384920161120f565b8401927f3b000000000000000000000000000000000000000000000000000000000000009384602082015261079382518093602060218501910161120f565b018360218201526107ae82518093602060228501910161120f565b018260228201526107c982518093602060238501910161120f565b019060238201527f6c6576656c3a706c75732b6c6976656e6573733b636974697a656e736869705f60248201527f6e6f743a3b7265736964656e63795f6e6f743a63642c63752c67622c69722c6b60448201527f702c6d6c2c6d6d2c73732c73792c75732c7965000000000000000000000000006064820152036057810185520183611199565b6108c2603a61085f8451611378565b936040519384916108b360208401977f19457468657265756d205369676e6564204d6573736167653a0a00000000000089526108a4815180926020898901910161120f565b8401915180938684019061120f565b0103601a810184520182611199565b5190207f000000000000000000000000acd08d6714adba531beff582e6fd5da1afd6bc6561150a565b15610e29577f0000000000000000000000000000000000000000000000000000000066b65abd4211610de55733600052600160205260ff60406000205416610da1576040805133602082019081526bffffffffffffffffffffffff84169282019290925261096681606081015b03601f198101835282611199565b51902060405160208101918252602081526109808161117d565b5190206040519061099d60206044356004013560051b0183611199565b60443560048101358352602401602083015b60246044356004013560051b60443501018210610d91575050916000925b8251841015610a685760208460051b8401015190818110600014610a575760005260205260406000205b927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610a2857600101926109cd565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b9060005260205260406000206109f7565b84907f1c598bb5ad0b99c0f07235c1bd7327884bf9a74c9454c3d2a937fbe8336d071b03610d4d57610a98611232565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007ff62f59e3e89ea34163ea1458eebcc81177cfb6165afa9081156103d757600091610d1b575b506bffffffffffffffffffffffff831611610cd757336000526001602052604060002060017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0082541617905573ffffffffffffffffffffffffffffffffffffffff604051917f748bb5e80000000000000000000000000000000000000000000000000000000083523360048401521660248201526bffffffffffffffffffffffff8216604482015263ffffffff807f00000000000000000000000000000000000000000000000000000000000000681660648301527f000000000000000000000000000000000000000000000000000000000000000016608482015260208160a481600073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000001bb66636dcd149a1a2ba8c50e408bddd80279c165af19081156103d757600091610ca5575b506bffffffffffffffffffffffff6040519216825260208201527f9923b4306c6c030f2bdfbf156517d5983b87e15b96176da122cd4f2effa4ba7b60403392a26001600055005b90506020813d602011610ccf575b81610cc060209383611199565b8101031261010a575182610c5e565b3d9150610cb3565b606460405162461bcd60e51b815260206004820152601d60248201527f416972677261623a20696e73756666696369656e742062616c616e63650000006044820152fd5b90506020813d602011610d45575b81610d3660209383611199565b8101031261010a575183610b12565b3d9150610d29565b606460405162461bcd60e51b815260206004820152601460248201527f416972677261623a206e6f7420696e20747265650000000000000000000000006044820152fd5b81358152602091820191016109af565b606460405162461bcd60e51b815260206004820152601860248201527f416972677261623a20616c726561647920636c61696d656400000000000000006044820152fd5b606460405162461bcd60e51b815260206004820152601160248201527f416972677261623a2066696e69736865640000000000000000000000000000006044820152fd5b606460405162461bcd60e51b815260206004820152601460248201527f416972677261623a20496e76616c6964204b59430000000000000000000000006044820152fd5b606460405162461bcd60e51b815260206004820152602060248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152fd5b906010600f82161015610f25578451821015610f25577f3031323334353637383961626364656600000000000000000000000000000000600f82161a6020838701015360041c908015610a28577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0161070c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b606460405162461bcd60e51b815260206004820152601e60248201527f416972677261623a204b5943206e6f7420726563656e7420656e6f75676800006044820152fd5b905060a435908101809111610a28574210866106c0565b606460405162461bcd60e51b815260206004820152601c60248201527f416972677261623a204b5943206e6f206c6f6e6765722076616c6964000000006044820152fd5b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000001bb66636dcd149a1a2ba8c50e408bddd80279c168152f35b3461010a57600060031936011261010a57602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000890db8a597940165901372dd7db61c9f246e2147168152f35b3461010a57600060031936011261010a57602060405160678152f35b3461010a57600060031936011261010a57602060405163ffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461010a57600060031936011261010a576020907f0000000000000000000000000000000000000000000000000000000000ed4e008152f35b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361010a57565b6040810190811067ffffffffffffffff821117610f5457604052565b90601f601f19910116810190811067ffffffffffffffff821117610f5457604052565b67ffffffffffffffff8111610f5457601f01601f191660200190565b9291926111e4826111bc565b916111f26040519384611199565b82948184528183011161010a578281602093846000960137010152565b60005b8381106112225750506000910152565b8181015183820152602001611212565b600260005414611243576002600055565b606460405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152fd5b3d156112b2573d90611298826111bc565b916112a66040519384611199565b82523d6000602084013e565b606090565b9192901561131857508151156112cb575090565b3b156112d45790565b606460405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b82519091501561132b5750805190602001fd5b61134f9060405191829162461bcd60e51b8352602060048401526024830190611353565b0390fd5b90601f19601f6020936113718151809281875287808801910161120f565b0116010190565b806000917a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000808210156114fc575b506d04ee2d6d415b85acef8100000000808310156114ed575b50662386f26fc10000808310156114de575b506305f5e100808310156114cf575b50612710808310156114c0575b5060648210156114b0575b600a809210156114a6575b60019081602181860195601f1961142d611417896111bc565b986114256040519a8b611199565b808a526111bc565b01366020890137860101905b611445575b5050505090565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff849101917f30313233343536373839616263646566000000000000000000000000000000008282061a8353049182156114a157919082611439565b61143e565b91600101916113fe565b91906064600291049101916113f3565b600491939204910191386113e8565b600891939204910191386113db565b601091939204910191386113cc565b602091939204910191386113ba565b6040935081049150386113a1565b90916115168184611616565b60058110156115e7571590816115c4575b506115bc57600091829160405161157b8161095860208201947f1626ba7e00000000000000000000000000000000000000000000000000000000998a87526024840152604060448401526064830190611353565b51915afa90611588611287565b826115b0575b8261159857505090565b90915060208180518101031261010a57602001511490565b8051602014925061158e565b505050600190565b905073ffffffffffffffffffffffffffffffffffffffff80841691161438611527565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b90604181511460001461164457611640916020820151906060604084015193015160001a9061164e565b9091565b5050600090600290565b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083116116de5791608094939160ff602094604051948552168484015260408301526060820152600093849182805260015afa156116d157815173ffffffffffffffffffffffffffffffffffffffff8116156116cb579190565b50600190565b50604051903d90823e3d90fd5b5050505060009060039056fea164736f6c6343000812000a