Address Details
contract
0xAB7064715B7944110EF7138C0c55D3c4132BdFd5
- Contract Name
- CycleTrader
- Creator
- 0x5ca621–4f95fd at 0x4694da–7c3fb4
- Balance
- 0 CELO ( )
- Tokens
-
Fetching tokens...
- Transactions
- 751,996 Transactions
- Transfers
- 811,437 Transfers
- Gas Used
- 391,819,977,329
- Last Balance Update
- 17866020
Transactions
Token Transfers
Tokens
Internal Transactions
Coin Balance History
Code
Read Contract
Write Contract
This contract has been verified via Sourcify.
View contract in Sourcify repository
- Contract name:
- CycleTrader
- Optimization enabled
- true
- Compiler version
- v0.6.12+commit.27d51765
- Optimization runs
- 200
- EVM Version
- istanbul
- Verified at
- 2021-12-18T07:12:12.755635Z
project:/contracts/CycleTrader.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; pragma experimental ABIEncoderV2; import { ISwappaRouterV1 } from "./ISwappaRouterV1.sol"; import { SafeMath } from "./Libraries.sol"; import { IERC20 } from "./Interfaces.sol"; interface ChiToken { function freeFromUpTo(address from, uint256 value) external; } contract CycleTrader { ISwappaRouterV1 public immutable swappaRouter; ChiToken public immutable chiToken; using SafeMath for uint256; constructor(ISwappaRouterV1 swappa, ChiToken chi) public { swappaRouter = swappa; chiToken = chi; } receive() payable external {} modifier discountCHI { uint256 gasStart = gasleft(); _; uint256 initialGas = 21000 + 16 * msg.data.length; uint256 gasSpent = initialGas + gasStart - gasleft(); uint256 freeUpValue = (gasSpent + 14154) / 41947; chiToken.freeFromUpTo(msg.sender, freeUpValue); } function trade( address[] calldata path, address[] calldata pairs, bytes[] calldata extras, uint256 inputAmount, uint256 minOutputAmount, uint deadline ) external payable discountCHI { if (deadline < block.timestamp) { // past deadline, do nothing return; } if (swappaRouter.getOutputAmount(path, pairs, extras, inputAmount) < minOutputAmount) { // money losing trade, do nothing return; } // take the input and approve for swappa router IERC20(path[0]).transferFrom(msg.sender, address(this), inputAmount); IERC20(path[0]).approve(address(swappaRouter), inputAmount); // run the swappa trade swappaRouter.swapExactInputForOutput( path, pairs, extras, inputAmount, minOutputAmount, // send the output of the trade to the message sender msg.sender, deadline ); } }
/project_/contracts/ISwappaRouterV1.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.6.8; pragma experimental ABIEncoderV2; interface ISwappaRouterV1 { function getOutputAmount( address[] calldata path, address[] calldata pairs, bytes[] calldata extras, uint256 inputAmount ) external view returns (uint256 outputAmount); function swapExactInputForOutput( address[] calldata path, address[] calldata pairs, bytes[] calldata extras, uint256 inputAmount, uint256 minOutputAmount, address to, uint deadline ) external returns (uint256 outputAmount); function swapExactInputForOutputWithPrecheck( address[] calldata path, address[] calldata pairs, bytes[] calldata extras, uint256 inputAmount, uint256 minOutputAmount, address to, uint deadline ) external returns (uint256 outputAmount); }
/project_/contracts/Interfaces.sol
// SPDX-License-Identifier: agpl-3.0 pragma solidity >=0.6.12; pragma experimental ABIEncoderV2; import { DataTypes } from "./Libraries.sol"; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } interface IFlashLoanReceiver { function executeOperation( address[] calldata assets, uint256[] calldata amounts, uint256[] calldata premiums, address initiator, bytes calldata params ) external returns (bool); function ADDRESSES_PROVIDER() external view returns (ILendingPoolAddressesProvider); function LENDING_POOL() external view returns (ILendingPool); } /** * @title LendingPoolAddressesProvider contract * @dev Main registry of addresses part of or connected to the protocol, including permissioned roles * - Acting also as factory of proxies and admin of those, so with right to change its implementations * - Owned by the Aave Governance * @author Aave **/ interface ILendingPoolAddressesProvider { event LendingPoolUpdated(address indexed newAddress); event ConfigurationAdminUpdated(address indexed newAddress); event EmergencyAdminUpdated(address indexed newAddress); event LendingPoolConfiguratorUpdated(address indexed newAddress); event LendingPoolCollateralManagerUpdated(address indexed newAddress); event PriceOracleUpdated(address indexed newAddress); event LendingRateOracleUpdated(address indexed newAddress); event ProxyCreated(bytes32 id, address indexed newAddress); event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy); function setAddress(bytes32 id, address newAddress) external; function setAddressAsProxy(bytes32 id, address impl) external; function getAddress(bytes32 id) external view returns (address); function getLendingPool() external view returns (address); function setLendingPoolImpl(address pool) external; function getLendingPoolConfigurator() external view returns (address); function setLendingPoolConfiguratorImpl(address configurator) external; function getLendingPoolCollateralManager() external view returns (address); function setLendingPoolCollateralManager(address manager) external; function getPoolAdmin() external view returns (address); function setPoolAdmin(address admin) external; function getEmergencyAdmin() external view returns (address); function setEmergencyAdmin(address admin) external; function getPriceOracle() external view returns (address); function setPriceOracle(address priceOracle) external; function getLendingRateOracle() external view returns (address); function setLendingRateOracle(address lendingRateOracle) external; } interface ILendingPool { /** * @dev Emitted on deposit() * @param reserve The address of the underlying asset of the reserve * @param user The address initiating the deposit * @param onBehalfOf The beneficiary of the deposit, receiving the aTokens * @param amount The amount deposited * @param referral The referral code used **/ event Deposit( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint16 indexed referral ); /** * @dev Emitted on withdraw() * @param reserve The address of the underlyng asset being withdrawn * @param user The address initiating the withdrawal, owner of aTokens * @param to Address that will receive the underlying * @param amount The amount to be withdrawn **/ event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount); /** * @dev Emitted on borrow() and flashLoan() when debt needs to be opened * @param reserve The address of the underlying asset being borrowed * @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just * initiator of the transaction on flashLoan() * @param onBehalfOf The address that will be getting the debt * @param amount The amount borrowed out * @param borrowRateMode The rate mode: 1 for Stable, 2 for Variable * @param borrowRate The numeric rate at which the user has borrowed * @param referral The referral code used **/ event Borrow( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint256 borrowRateMode, uint256 borrowRate, uint16 indexed referral ); /** * @dev Emitted on repay() * @param reserve The address of the underlying asset of the reserve * @param user The beneficiary of the repayment, getting his debt reduced * @param repayer The address of the user initiating the repay(), providing the funds * @param amount The amount repaid **/ event Repay( address indexed reserve, address indexed user, address indexed repayer, uint256 amount ); /** * @dev Emitted on swapBorrowRateMode() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user swapping his rate mode * @param rateMode The rate mode that the user wants to swap to **/ event Swap(address indexed reserve, address indexed user, uint256 rateMode); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral **/ event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral **/ event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user); /** * @dev Emitted on rebalanceStableBorrowRate() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user for which the rebalance has been executed **/ event RebalanceStableBorrowRate(address indexed reserve, address indexed user); /** * @dev Emitted on flashLoan() * @param target The address of the flash loan receiver contract * @param initiator The address initiating the flash loan * @param asset The address of the asset being flash borrowed * @param amount The amount flash borrowed * @param premium The fee flash borrowed * @param referralCode The referral code used **/ event FlashLoan( address indexed target, address indexed initiator, address indexed asset, uint256 amount, uint256 premium, uint16 referralCode ); /** * @dev Emitted when the pause is triggered. */ event Paused(); /** * @dev Emitted when the pause is lifted. */ event Unpaused(); /** * @dev Emitted when a borrower is liquidated. This event is emitted by the LendingPool via * LendingPoolCollateral manager using a DELEGATECALL * This allows to have the events in the generated ABI for LendingPool. * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param liquidatedCollateralAmount The amount of collateral received by the liiquidator * @param liquidator The address of the liquidator * @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly **/ event LiquidationCall( address indexed collateralAsset, address indexed debtAsset, address indexed user, uint256 debtToCover, uint256 liquidatedCollateralAmount, address liquidator, bool receiveAToken ); /** * @dev Emitted when the state of a reserve is updated. NOTE: This event is actually declared * in the ReserveLogic library and emitted in the updateInterestRates() function. Since the function is internal, * the event will actually be fired by the LendingPool contract. The event is therefore replicated here so it * gets added to the LendingPool ABI * @param reserve The address of the underlying asset of the reserve * @param liquidityRate The new liquidity rate * @param stableBorrowRate The new stable borrow rate * @param variableBorrowRate The new variable borrow rate * @param liquidityIndex The new liquidity index * @param variableBorrowIndex The new variable borrow index **/ event ReserveDataUpdated( address indexed reserve, uint256 liquidityRate, uint256 stableBorrowRate, uint256 variableBorrowRate, uint256 liquidityIndex, uint256 variableBorrowIndex ); /** * @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens. * - E.g. User deposits 100 USDC and gets in return 100 aUSDC * @param asset The address of the underlying asset to deposit * @param amount The amount to be deposited * @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user * wants to receive them on his own wallet, or a different address if the beneficiary of aTokens * is a different wallet * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function deposit( address asset, uint256 amount, address onBehalfOf, uint16 referralCode ) external; /** * @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned * E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC * @param asset The address of the underlying asset to withdraw * @param amount The underlying amount to be withdrawn * - Send the value type(uint256).max in order to withdraw the whole aToken balance * @param to Address that will receive the underlying, same as msg.sender if the user * wants to receive it on his own wallet, or a different address if the beneficiary is a * different wallet **/ function withdraw( address asset, uint256 amount, address to ) external; /** * @dev Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower * already deposited enough collateral, or he was given enough allowance by a credit delegator on the * corresponding debt token (StableDebtToken or VariableDebtToken) * - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet * and 100 stable/variable debt tokens, depending on the `interestRateMode` * @param asset The address of the underlying asset to borrow * @param amount The amount to be borrowed * @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man * @param onBehalfOf Address of the user who will receive the debt. Should be the address of the borrower itself * calling the function if he wants to borrow against his own collateral, or the address of the credit delegator * if he has been given credit delegation allowance **/ function borrow( address asset, uint256 amount, uint256 interestRateMode, uint16 referralCode, address onBehalfOf ) external; /** * @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned * - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address * @param asset The address of the borrowed underlying asset previously borrowed * @param amount The amount to repay * - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode` * @param rateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable * @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the * user calling the function if he wants to reduce/remove his own debt, or the address of any other * other borrower whose debt should be removed **/ function repay( address asset, uint256 amount, uint256 rateMode, address onBehalfOf ) external; /** * @dev Allows a borrower to swap his debt between stable and variable mode, or viceversa * @param asset The address of the underlying asset borrowed * @param rateMode The rate mode that the user wants to swap to **/ function swapBorrowRateMode(address asset, uint256 rateMode) external; /** * @dev Rebalances the stable interest rate of a user to the current stable rate defined on the reserve. * - Users can be rebalanced if the following conditions are satisfied: * 1. Usage ratio is above 95% * 2. the current deposit APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too much has been * borrowed at a stable rate and depositors are not earning enough * @param asset The address of the underlying asset borrowed * @param user The address of the user to be rebalanced **/ function rebalanceStableBorrowRate(address asset, address user) external; /** * @dev Allows depositors to enable/disable a specific deposited asset as collateral * @param asset The address of the underlying asset deposited * @param useAsCollateral `true` if the user wants to use the deposit as collateral, `false` otherwise **/ function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external; /** * @dev Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1 * - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives * a proportionally amount of the `collateralAsset` plus a bonus to cover market risk * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly **/ function liquidationCall( address collateralAsset, address debtAsset, address user, uint256 debtToCover, bool receiveAToken ) external; /** * @dev Allows smartcontracts to access the liquidity of the pool within one transaction, * as long as the amount taken plus a fee is returned. * IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept into consideration. * For further details please visit https://developers.aave.com * @param receiverAddress The address of the contract receiving the funds, implementing the IFlashLoanReceiver interface * @param assets The addresses of the assets being flash-borrowed * @param amounts The amounts amounts being flash-borrowed * @param modes Types of the debt to open if the flash loan is not returned: * 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver * 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2 * @param params Variadic packed params to pass to the receiver as extra information * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function flashLoan( address receiverAddress, address[] calldata assets, uint256[] calldata amounts, uint256[] calldata modes, address onBehalfOf, bytes calldata params, uint16 referralCode ) external; /** * @dev Returns the user account data across all the reserves * @param user The address of the user * @return totalCollateralETH the total collateral in ETH of the user * @return totalDebtETH the total debt in ETH of the user * @return availableBorrowsETH the borrowing power left of the user * @return currentLiquidationThreshold the liquidation threshold of the user * @return ltv the loan to value of the user * @return healthFactor the current health factor of the user **/ function getUserAccountData(address user) external view returns ( uint256 totalCollateralETH, uint256 totalDebtETH, uint256 availableBorrowsETH, uint256 currentLiquidationThreshold, uint256 ltv, uint256 healthFactor ); function initReserve( address reserve, address aTokenAddress, address stableDebtAddress, address variableDebtAddress, address interestRateStrategyAddress ) external; function setReserveInterestRateStrategyAddress(address reserve, address rateStrategyAddress) external; function setConfiguration(address reserve, uint256 configuration) external; /** * @dev Returns the configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The configuration of the reserve **/ function getConfiguration(address asset) external view returns (DataTypes.ReserveConfigurationMap memory); /** * @dev Returns the configuration of the user across all the reserves * @param user The user address * @return The configuration of the user **/ function getUserConfiguration(address user) external view returns (DataTypes.UserConfigurationMap memory); /** * @dev Returns the normalized income normalized income of the reserve * @param asset The address of the underlying asset of the reserve * @return The reserve's normalized income */ function getReserveNormalizedIncome(address asset) external view returns (uint256); /** * @dev Returns the normalized variable debt per unit of asset * @param asset The address of the underlying asset of the reserve * @return The reserve normalized variable debt */ function getReserveNormalizedVariableDebt(address asset) external view returns (uint256); /** * @dev Returns the state and configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The state of the reserve **/ function getReserveData(address asset) external view returns (DataTypes.ReserveData memory); function finalizeTransfer( address asset, address from, address to, uint256 amount, uint256 balanceFromAfter, uint256 balanceToBefore ) external; function getReservesList() external view returns (address[] memory); function getAddressesProvider() external view returns (ILendingPoolAddressesProvider); function setPause(bool val) external; function paused() external view returns (bool); }
/project_/contracts/Libraries.sol
// SPDX-License-Identifier: agpl-3.0 pragma solidity >=0.6.12; import { IERC20 } from "./Interfaces.sol"; library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, 'SafeMath: addition overflow'); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, 'SafeMath: subtraction overflow'); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, 'SafeMath: multiplication overflow'); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, 'SafeMath: division by zero'); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, 'SafeMath: modulo by zero'); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } } /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove( IERC20 token, address spender, uint256 value ) internal { require( (value == 0) || (token.allowance(address(this), spender) == 0), 'SafeERC20: approve from non-zero to non-zero allowance' ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), 'SafeERC20: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success, 'SafeERC20: low-level call failed'); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed'); } } } library DataTypes { // refer to the whitepaper, section 1.1 basic concepts for a formal description of these properties. struct ReserveData { //stores the reserve configuration ReserveConfigurationMap configuration; //the liquidity index. Expressed in ray uint128 liquidityIndex; //variable borrow index. Expressed in ray uint128 variableBorrowIndex; //the current supply rate. Expressed in ray uint128 currentLiquidityRate; //the current variable borrow rate. Expressed in ray uint128 currentVariableBorrowRate; //the current stable borrow rate. Expressed in ray uint128 currentStableBorrowRate; uint40 lastUpdateTimestamp; //tokens addresses address aTokenAddress; address stableDebtTokenAddress; address variableDebtTokenAddress; //address of the interest rate strategy address interestRateStrategyAddress; //the id of the reserve. Represents the position in the list of the active reserves uint8 id; } struct ReserveConfigurationMap { //bit 0-15: LTV //bit 16-31: Liq. threshold //bit 32-47: Liq. bonus //bit 48-55: Decimals //bit 56: Reserve is active //bit 57: reserve is frozen //bit 58: borrowing is enabled //bit 59: stable rate borrowing enabled //bit 60-63: reserved //bit 64-79: reserve factor uint256 data; } struct UserConfigurationMap { uint256 data; } enum InterestRateMode {NONE, STABLE, VARIABLE} }
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"swappa","internalType":"contract ISwappaRouterV1"},{"type":"address","name":"chi","internalType":"contract ChiToken"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract ChiToken"}],"name":"chiToken","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract ISwappaRouterV1"}],"name":"swappaRouter","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"trade","inputs":[{"type":"address[]","name":"path","internalType":"address[]"},{"type":"address[]","name":"pairs","internalType":"address[]"},{"type":"bytes[]","name":"extras","internalType":"bytes[]"},{"type":"uint256","name":"inputAmount","internalType":"uint256"},{"type":"uint256","name":"minOutputAmount","internalType":"uint256"},{"type":"uint256","name":"deadline","internalType":"uint256"}]},{"type":"receive","stateMutability":"payable"}]
Deployed ByteCode
0x6080604052600436106100385760003560e01c80630c051135146100445780632dd9cbee1461006f578063fac994c2146100845761003f565b3661003f57005b600080fd5b34801561005057600080fd5b50610059610099565b60405161006691906107d8565b60405180910390f35b61008261007d3660046104f4565b6100bd565b005b34801561009057600080fd5b50610059610448565b7f00000000000000000000000062a25e867f7853b362bbda8c0f400466a806388081565b60005a9050428210156100cf5761039b565b60405162717a3560e91b815283906001600160a01b037f000000000000000000000000f35ed7156babf2541e032b3bb8625210316e2832169063e2f46a0090610128908e908e908e908e908e908e908e90600401610718565b60206040518083038186803b15801561014057600080fd5b505afa158015610154573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061017891906105c2565b10156101835761039b565b8989600081811061019057fe5b90506020020160208101906101a591906104d2565b6001600160a01b03166323b872dd3330876040518463ffffffff1660e01b81526004016101d4939291906106db565b602060405180830381600087803b1580156101ee57600080fd5b505af1158015610202573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061022691906105a2565b508989600081811061023457fe5b905060200201602081019061024991906104d2565b6001600160a01b031663095ea7b37f000000000000000000000000f35ed7156babf2541e032b3bb8625210316e2832866040518363ffffffff1660e01b81526004016102969291906106ff565b602060405180830381600087803b1580156102b057600080fd5b505af11580156102c4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102e891906105a2565b50604051630862d12f60e01b81526001600160a01b037f000000000000000000000000f35ed7156babf2541e032b3bb8625210316e28321690630862d12f90610347908d908d908d908d908d908d908d908d9033908e90600401610769565b602060405180830381600087803b15801561036157600080fd5b505af1158015610375573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061039991906105c2565b505b615208601036020160005a60405163079d229f60e01b815284840191909103915061a3db61374a830104906001600160a01b037f00000000000000000000000062a25e867f7853b362bbda8c0f400466a8063880169063079d229f9061040790339085906004016106ff565b600060405180830381600087803b15801561042157600080fd5b505af1158015610435573d6000803e3d6000fd5b5050505050505050505050505050505050565b7f000000000000000000000000f35ed7156babf2541e032b3bb8625210316e283281565b80356001600160a01b038116811461048357600080fd5b92915050565b60008083601f84011261049a578182fd5b50813567ffffffffffffffff8111156104b1578182fd5b60208301915083602080830285010111156104cb57600080fd5b9250929050565b6000602082840312156104e3578081fd5b6104ed838361046c565b9392505050565b600080600080600080600080600060c08a8c031215610511578485fd5b893567ffffffffffffffff80821115610528578687fd5b6105348d838e01610489565b909b50995060208c013591508082111561054c578687fd5b6105588d838e01610489565b909950975060408c0135915080821115610570578687fd5b5061057d8c828d01610489565b9a9d999c50979a969997986060880135976080810135975060a0013595509350505050565b6000602082840312156105b3578081fd5b815180151581146104ed578182fd5b6000602082840312156105d3578081fd5b5051919050565b60008284526020808501945082825b85811015610617578183016001600160a01b03610606828561046c565b1688529683019691506001016105e9565b509495945050505050565b8183526020808401936000918085028201810184845b878110156106a457848303601f19018952813536889003601e1901811261065d578687fd5b8701803567ffffffffffffffff811115610675578788fd5b803603891315610683578788fd5b61069085828885016106b1565b9a86019a9450505090830190600101610638565b5090979650505050505050565b60008284528282602086013780602084860101526020601f19601f85011685010190509392505050565b6001600160a01b039384168152919092166020820152604081019190915260600190565b6001600160a01b03929092168252602082015260400190565b60006080825261072c60808301898b6105da565b828103602084015261073f81888a6105da565b90508281036040840152610754818688610622565b91505082606083015298975050505050505050565b600060e0825261077d60e083018c8e6105da565b8281036020840152610790818b8d6105da565b905082810360408401526107a581898b610622565b6060840197909752505060808101939093526001600160a01b039190911660a083015260c0909101529695505050505050565b6001600160a01b039190911681526020019056fea26469706673582212200123308271789fe61cedc8466b62126183849378417d1bccf91386e53336b3f564736f6c634300060c0033