Address Details
contract
0x47B7bdA16AB8B617E976c83A2c3c8664944d8Ed2
- Contract Name
- WeightedPoolNoAMFactory
- Creator
- 0x0dc437–43c26b at 0x6e43ab–f14571
- Balance
- 0 CELO ( )
- Locked CELO Balance
- 0.00 CELO
- Voting CELO Balance
- 0.00 CELO
- Pending Unlocked Gold
- 0.00 CELO
- Tokens
-
Fetching tokens...
- Transactions
- 119 Transactions
- Transfers
- 0 Transfers
- Gas Used
- 591,153,936
- Last Balance Update
- 22205287
This contract has been verified via Sourcify.
View contract in Sourcify repository
- Contract name:
- WeightedPoolNoAMFactory
- Optimization enabled
- true
- Compiler version
- v0.7.3+commit.9bfce1f6
- Optimization runs
- 800
- EVM Version
- istanbul
- Verified at
- 2022-06-12T08:38:38.546220Z
pkg/pool-weighted/contracts/WeightedPoolNoAMFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../vault/contracts/interfaces/IVault.sol"; import "../../pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol"; import "../../pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./WeightedPool.sol"; contract WeightedPoolNoAMFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `WeightedPool` without asset managers. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory weights, uint256 swapFeePercentage, address owner ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); return _create( abi.encode( getVault(), name, symbol, tokens, weights, new address[](tokens.length), // Don't allow asset managers swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) ); } }
/pkg/asset-manager-utils/contracts/IAssetManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
/pkg/pool-utils/contracts/BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../../solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; import "../../vault/contracts/interfaces/IVault.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` * - Assigns infinite allowance for all token holders to the Vault */ contract BalancerPoolToken is ERC20Permit { IVault private immutable _vault; constructor( string memory tokenName, string memory tokenSymbol, IVault vault ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { _vault = vault; } function getVault() public view returns (IVault) { return _vault; } // Overrides /** * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval. * * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this * contract inherits. */ function allowance(address owner, address spender) public view override returns (uint256) { if (spender == address(getVault())) { return uint256(-1); } else { return super.allowance(owner, spender); } } /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
/pkg/pool-utils/contracts/BaseMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "../../vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override onlyVault(request.poolId) returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount); // Process the (upscaled!) swap fee. uint256 swapFee = request.amount - amountInMinusSwapFees; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); request.amount = amountInMinusSwapFees; // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn); // Process the (upscaled!) swap fee. uint256 swapFee = amountInPlusSwapFees - amountIn; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); return amountInPlusSwapFees; } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /** * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all * implementations in the inheritance tree are called. * * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed, * and upscale `amount`. */ function _processSwapFeeAmount( uint256, /*index*/ uint256 /*amount*/ ) internal virtual { // solhint-disable-previous-line no-empty-blocks } function _processSwapFeeAmount(IERC20 token, uint256 amount) internal { _processSwapFeeAmount(_tokenAddressToIndex(token), amount); } function _processSwapFeeAmounts(uint256[] memory amounts) internal { InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { _processSwapFeeAmount(i, amounts[i]); } } /** * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return). * * A trivial (and incorrect!) implementation is already provided for Pools that don't override * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount` * *must* override this function with a meaningful implementation. */ function _tokenAddressToIndex( IERC20 /*token*/ ) internal view virtual returns (uint256) { return 0; } }
/pkg/pool-utils/contracts/BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../solidity-utils/contracts/math/Math.sol"; import "../../solidity-utils/contracts/math/FixedPoint.sol"; import "../../solidity-utils/contracts/helpers/InputHelpers.sol"; import "../../solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "../../solidity-utils/contracts/helpers/WordCodec.sol"; import "../../solidity-utils/contracts/openzeppelin/ERC20.sol"; import "../../vault/contracts/interfaces/IVault.sol"; import "../../vault/contracts/interfaces/IBasePool.sol"; import "../../asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol, vault) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _poolId = poolId; } // Getters / Setters function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); /** * @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively * locking it. * * This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even * to zero) by overriding this function. */ function _getMinimumBpt() internal pure virtual returns (uint256) { return _DEFAULT_MINIMUM_BPT; } function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the // Pool from ever being fully drained. _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _getMinimumBpt()); _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt()); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire * Pool's lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { if (address(token) == address(this)) { return FixedPoint.ONE; } // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
/pkg/pool-utils/contracts/BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../../solidity-utils/contracts/helpers/Authentication.sol"; import "../../vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
/pkg/pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../../solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol"; import "../../../vault/contracts/interfaces/IVault.sol"; /** * @dev Same as `BasePoolFactory`, for Pools whose creation code is so large that the factory cannot hold it. */ abstract contract BasePoolSplitCodeFactory is BaseSplitCodeFactory { IVault private immutable _vault; mapping(address => bool) private _isPoolFromFactory; event PoolCreated(address indexed pool); constructor(IVault vault, bytes memory creationCode) BaseSplitCodeFactory(creationCode) { _vault = vault; } /** * @dev Returns the Vault's address. */ function getVault() public view returns (IVault) { return _vault; } /** * @dev Returns true if `pool` was created by this factory. */ function isPoolFromFactory(address pool) external view returns (bool) { return _isPoolFromFactory[pool]; } function _create(bytes memory constructorArgs) internal override returns (address) { address pool = super._create(constructorArgs); _isPoolFromFactory[pool] = true; emit PoolCreated(pool); return pool; } }
/pkg/pool-utils/contracts/factories/FactoryWidePauseWindow.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; /** * @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract. * * By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this * factory will share the same Pause Window end time, after which both old and new Pools will not be pausable. */ contract FactoryWidePauseWindow { // This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply. // solhint-disable not-rely-on-time uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _BUFFER_PERIOD_DURATION = 30 days; // Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes // zero. uint256 private immutable _poolsPauseWindowEndTime; constructor() { _poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION; } /** * @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this * factory. * * `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and * `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable. */ function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { uint256 currentTime = block.timestamp; if (currentTime < _poolsPauseWindowEndTime) { // The buffer period is always the same since its duration is related to how much time is needed to respond // to a potential emergency. The Pause Window duration however decreases as the end time approaches. pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic. bufferPeriodDuration = _BUFFER_PERIOD_DURATION; } else { // After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not // pausable in the first place). pauseWindowDuration = 0; bufferPeriodDuration = 0; } } }
/pkg/pool-weighted/contracts/BaseWeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../solidity-utils/contracts/math/FixedPoint.sol"; import "../../solidity-utils/contracts/helpers/InputHelpers.sol"; import "../../pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "./WeightedPoolUserData.sol"; import "./WeightedMath.sol"; /** * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic * based on local or external logic. */ abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool { using FixedPoint for uint256; using WeightedPoolUserData for bytes; uint256 private _lastInvariant; constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free // gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { // solhint-disable-previous-line no-empty-blocks } // Virtual functions /** * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE. */ function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens. */ function _getNormalizedWeights() internal view virtual returns (uint256[] memory); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token * with the highest weight. */ function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256); function getLastInvariant() public view virtual returns (uint256) { return _lastInvariant; } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Since the Pool hooks always work with upscaled balances, we manually // upscale here for consistency _upscaleArray(balances, _scalingFactors()); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function getNormalizedWeights() external view returns (uint256[] memory) { return _getNormalizedWeights(); } // Base Pool handlers // Swap function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcOutGivenIn( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcInGivenOut( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. WeightedPoolUserData.JoinKind kind = userData.joinKind(); _require(kind == WeightedPoolUserData.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens()); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // All joins are disabled while the contract is paused. (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // computing them on each individual swap uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances); uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeJoin, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin( balances, normalizedWeights, scalingFactors, userData ); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { WeightedPoolUserData.JoinKind kind = userData.joinKind(); if (kind == WeightedPoolUserData.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData); } else if (kind == WeightedPoolUserData.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData); } else if (kind == WeightedPoolUserData.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) { return _joinAllTokensInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, totalSupply(), getSwapFeePercentage() ); // Note that swapFees is already upscaled _processSwapFeeAmounts(swapFees); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountOut, totalSupply(), getSwapFeePercentage() ); // Note that swapFee is already upscaled _processSwapFeeAmount(tokenIndex, swapFee); // We join in a single token, so we initialize amountsIn with zeros uint256[] memory amountsIn = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsIn[tokenIndex] = amountIn; return (bptAmountOut, amountsIn); } function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { uint256 bptAmountOut = userData.allTokensInForExactBptOut(); // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`. uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut( balances, bptAmountOut, totalSupply() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances); dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeExit, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fees due in future joins and exits. _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { WeightedPoolUserData.ExitKind kind = userData.exitKind(); if (kind == WeightedPoolUserData.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData); } else if (kind == WeightedPoolUserData.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == WeightedPoolUserData.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountIn, totalSupply(), getSwapFeePercentage() ); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmount(tokenIndex, swapFee); // We exit in a single token, so we initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsOut[tokenIndex] = amountOut; return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmounts(swapFees); return (bptAmountIn, amountsOut); } // Helpers function _getDueProtocolFeeAmounts( uint256[] memory balances, uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool. dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount( balances[maxWeightTokenIndex], normalizedWeights[maxWeightTokenIndex], previousInvariant, currentInvariant, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All * amounts are expected to be upscaled. */ function _invariantAfterJoin( uint256[] memory balances, uint256[] memory amountsIn, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsIn, FixedPoint.add); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function _invariantAfterExit( uint256[] memory balances, uint256[] memory amountsOut, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsOut, FixedPoint.sub); return WeightedMath._calculateInvariant(normalizedWeights, balances); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { // The initial BPT supply is equal to the invariant times the number of tokens. return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply()); } }
/pkg/pool-weighted/contracts/WeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../../solidity-utils/contracts/math/FixedPoint.sol"; import "../../solidity-utils/contracts/math/Math.sol"; import "../../solidity-utils/contracts/helpers/InputHelpers.sol"; // These functions start with an underscore, as if they were part of a contract and not a library. At some point this // should be fixed. // solhint-disable private-vars-leading-underscore library WeightedMath { using FixedPoint for uint256; // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the // implementation of the power function, as these ratios are often exponents. uint256 internal constant _MIN_WEIGHT = 0.01e18; // Having a minimum normalized weight imposes a limit on the maximum number of tokens; // i.e., the largest possible pool is one where all tokens have exactly the minimum weight. uint256 internal constant _MAX_WEIGHTED_TOKENS = 100; // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight // ratio). // Swap limits: amounts swapped may not be larger than this percentage of total balance. uint256 internal constant _MAX_IN_RATIO = 0.3e18; uint256 internal constant _MAX_OUT_RATIO = 0.3e18; // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio. uint256 internal constant _MAX_INVARIANT_RATIO = 3e18; // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio. uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18; // About swap fees on joins and exits: // Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically // equivalent to a perfectly balanced join or exit followed by a series of swaps. Since these swaps would charge // swap fees, it follows that (some) joins and exits should as well. // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part // is the one to which swap fees are applied. // Invariant is used to collect protocol swap fees by comparing its value between two times. // So we can round always to the same direction. It is also used to initiate the BPT amount // and, because there is a minimum BPT, we round down the invariant. function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances) internal pure returns (uint256 invariant) { /********************************************************************************************** // invariant _____ // // wi = weight index i | | wi // // bi = balance index i | | bi ^ = i // // i = invariant // **********************************************************************************************/ invariant = FixedPoint.ONE; for (uint256 i = 0; i < normalizedWeights.length; i++) { invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i])); } _require(invariant > 0, Errors.ZERO_INVARIANT); } // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the // current balances and weights. function _calcOutGivenIn( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountIn ) internal pure returns (uint256) { /********************************************************************************************** // outGivenIn // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bI \ (wI / wO) \ // // aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | // // wI = weightIn \ \ ( bI + aI ) / / // // wO = weightOut // **********************************************************************************************/ // Amount out, so we round down overall. // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too). // Because bI / (bI + aI) <= 1, the exponent rounds down. // Cannot exceed maximum in ratio _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO); uint256 denominator = balanceIn.add(amountIn); uint256 base = balanceIn.divUp(denominator); uint256 exponent = weightIn.divDown(weightOut); uint256 power = base.powUp(exponent); return balanceOut.mulDown(power.complement()); } // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the // current balances and weights. function _calcInGivenOut( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountOut ) internal pure returns (uint256) { /********************************************************************************************** // inGivenOut // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bO \ (wO / wI) \ // // aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | // // wI = weightIn \ \ ( bO - aO ) / / // // wO = weightOut // **********************************************************************************************/ // Amount in, so we round up overall. // The multiplication rounds up, and the power rounds up (so the base rounds up too). // Because b0 / (b0 - a0) >= 1, the exponent rounds up. // Cannot exceed maximum out ratio _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO); uint256 base = balanceOut.divUp(balanceOut.sub(amountOut)); uint256 exponent = weightOut.divUp(weightIn); uint256 power = base.powUp(exponent); // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so // the following subtraction should never revert. uint256 ratio = power.sub(FixedPoint.ONE); return balanceIn.mulUp(ratio); } function _calcBptOutGivenExactTokensIn( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256, uint256[] memory) { // BPT out, so we round down overall. uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i])); } (uint256 invariantRatio, uint256[] memory swapFees) = _computeJoinExactTokensInInvariantRatio( balances, normalizedWeights, amountsIn, balanceRatiosWithFee, invariantRatioWithFees, swapFeePercentage ); uint256 bptOut = (invariantRatio > FixedPoint.ONE) ? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE)) : 0; return (bptOut, swapFees); } /** * @dev Intermediate function to avoid stack-too-deep errors. */ function _computeJoinExactTokensInInvariantRatio( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256[] memory balanceRatiosWithFee, uint256 invariantRatioWithFees, uint256 swapFeePercentage ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) { // Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant // increase. swapFees = new uint256[](amountsIn.length); invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); uint256 swapFee = taxableAmount.mulUp(swapFeePercentage); amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee)); swapFees[i] = swapFee; } else { amountInWithoutFee = amountsIn[i]; } uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } } function _calcTokenInGivenExactBptOut( uint256 balance, uint256 normalizedWeight, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256 amountIn, uint256 swapFee) { /****************************************************************************************** // tokenInForExactBPTOut // // a = amountIn // // b = balance / / totalBPT + bptOut \ (1 / w) \ // // bptOut = bptAmountOut a = b * | | -------------------------- | ^ - 1 | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // ******************************************************************************************/ // Token in, so we round up overall. // Calculate the factor by which the invariant will increase after minting BPTAmountOut uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply); _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN); // Calculate by how much the token balance has to increase to match the invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight)); uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE)); // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 taxablePercentage = normalizedWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)); swapFee = taxableAmountPlusFees - taxableAmount; amountIn = nonTaxableAmount.add(taxableAmountPlusFees); } function _calcAllTokensInGivenExactBptOut( uint256[] memory balances, uint256 bptAmountOut, uint256 totalBPT ) internal pure returns (uint256[] memory) { /************************************************************************************ // tokensInForExactBptOut // // (per token) // // aI = amountIn / bptOut \ // // b = balance aI = b * | ------------ | // // bptOut = bptAmountOut \ totalBPT / // // bpt = totalBPT // ************************************************************************************/ // Tokens in, so we round up overall. uint256 bptRatio = bptAmountOut.divUp(totalBPT); uint256[] memory amountsIn = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsIn[i] = balances[i].mulUp(bptRatio); } return amountsIn; } function _calcBptInGivenExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256, uint256[] memory) { // BPT in, so we round up overall. uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add( balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i]) ); } (uint256 invariantRatio, uint256[] memory swapFees) = _computeExitExactTokensOutInvariantRatio( balances, normalizedWeights, amountsOut, balanceRatiosWithoutFee, invariantRatioWithoutFees, swapFeePercentage ); uint256 bptIn = bptTotalSupply.mulUp(invariantRatio.complement()); return (bptIn, swapFees); } /** * @dev Intermediate function to avoid stack-too-deep errors. */ function _computeExitExactTokensOutInvariantRatio( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256[] memory balanceRatiosWithoutFee, uint256 invariantRatioWithoutFees, uint256 swapFeePercentage ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) { swapFees = new uint256[](amountsOut.length); invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)); swapFees[i] = taxableAmountPlusFees - taxableAmount; amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees); } else { amountOutWithFee = amountsOut[i]; } uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } } function _calcTokenOutGivenExactBptIn( uint256 balance, uint256 normalizedWeight, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256 amountOut, uint256 swapFee) { /***************************************************************************************** // exactBPTInForTokenOut // // a = amountOut // // b = balance / / totalBPT - bptIn \ (1 / w) \ // // bptIn = bptAmountIn a = b * | 1 - | -------------------------- | ^ | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // *****************************************************************************************/ // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down. // Calculate the factor by which the invariant will decrease after burning BPTAmountIn uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply); _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT); // Calculate by how much the token balance has to decrease to match invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight)); // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts. uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement()); // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 taxablePercentage = normalizedWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); swapFee = taxableAmount.mulUp(swapFeePercentage); amountOut = nonTaxableAmount.add(taxableAmount.sub(swapFee)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 totalBPT ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = amountOut / bptIn \ // // b = balance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ totalBPT / // // bpt = totalBPT // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(totalBPT); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } function _calcDueTokenProtocolSwapFeeAmount( uint256 balance, uint256 normalizedWeight, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /********************************************************************************* /* protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken)) *********************************************************************************/ if (currentInvariant <= previousInvariant) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol // fees to the Vault. // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down. uint256 base = previousInvariant.divUp(currentInvariant); uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight); // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than // 1 / min exponent) the Pool will pay less in protocol fees than it should. base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT); uint256 power = base.powUp(exponent); uint256 tokenAccruedFees = balance.mulDown(power.complement()); return tokenAccruedFees.mulDown(protocolSwapFeePercentage); } }
/pkg/pool-weighted/contracts/WeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BaseWeightedPool.sol"; /** * @dev Basic Weighted Pool with immutable weights. */ contract WeightedPool is BaseWeightedPool { using FixedPoint for uint256; uint256 private constant _MAX_TOKENS = 20; uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; IERC20 internal immutable _token4; IERC20 internal immutable _token5; IERC20 internal immutable _token6; IERC20 internal immutable _token7; IERC20 internal immutable _token8; IERC20 internal immutable _token9; IERC20 internal immutable _token10; IERC20 internal immutable _token11; IERC20 internal immutable _token12; IERC20 internal immutable _token13; IERC20 internal immutable _token14; IERC20 internal immutable _token15; IERC20 internal immutable _token16; IERC20 internal immutable _token17; IERC20 internal immutable _token18; IERC20 internal immutable _token19; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; uint256 internal immutable _scalingFactor4; uint256 internal immutable _scalingFactor5; uint256 internal immutable _scalingFactor6; uint256 internal immutable _scalingFactor7; uint256 internal immutable _scalingFactor8; uint256 internal immutable _scalingFactor9; uint256 internal immutable _scalingFactor10; uint256 internal immutable _scalingFactor11; uint256 internal immutable _scalingFactor12; uint256 internal immutable _scalingFactor13; uint256 internal immutable _scalingFactor14; uint256 internal immutable _scalingFactor15; uint256 internal immutable _scalingFactor16; uint256 internal immutable _scalingFactor17; uint256 internal immutable _scalingFactor18; uint256 internal immutable _scalingFactor19; // The protocol fees will always be charged using the token associated with the max weight in the pool. // Since these Pools will register tokens only once, we can assume this index will be constant. uint256 internal immutable _maxWeightTokenIndex; uint256 internal immutable _normalizedWeight0; uint256 internal immutable _normalizedWeight1; uint256 internal immutable _normalizedWeight2; uint256 internal immutable _normalizedWeight3; uint256 internal immutable _normalizedWeight4; uint256 internal immutable _normalizedWeight5; uint256 internal immutable _normalizedWeight6; uint256 internal immutable _normalizedWeight7; uint256 internal immutable _normalizedWeight8; uint256 internal immutable _normalizedWeight9; uint256 internal immutable _normalizedWeight10; uint256 internal immutable _normalizedWeight11; uint256 internal immutable _normalizedWeight12; uint256 internal immutable _normalizedWeight13; uint256 internal immutable _normalizedWeight14; uint256 internal immutable _normalizedWeight15; uint256 internal immutable _normalizedWeight16; uint256 internal immutable _normalizedWeight17; uint256 internal immutable _normalizedWeight18; uint256 internal immutable _normalizedWeight19; constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory normalizedWeights, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BaseWeightedPool( vault, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { uint256 numTokens = tokens.length; InputHelpers.ensureInputLengthMatch(numTokens, normalizedWeights.length); _totalTokens = numTokens; // Ensure each normalized weight is above them minimum and find the token index of the maximum weight uint256 normalizedSum = 0; uint256 maxWeightTokenIndex = 0; uint256 maxNormalizedWeight = 0; for (uint8 i = 0; i < numTokens; i++) { uint256 normalizedWeight = normalizedWeights[i]; _require(normalizedWeight >= WeightedMath._MIN_WEIGHT, Errors.MIN_WEIGHT); normalizedSum = normalizedSum.add(normalizedWeight); if (normalizedWeight > maxNormalizedWeight) { maxWeightTokenIndex = i; maxNormalizedWeight = normalizedWeight; } } // Ensure that the normalized weights sum to ONE _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT); _maxWeightTokenIndex = maxWeightTokenIndex; _normalizedWeight0 = normalizedWeights[0]; _normalizedWeight1 = normalizedWeights[1]; _normalizedWeight2 = numTokens > 2 ? normalizedWeights[2] : 0; _normalizedWeight3 = numTokens > 3 ? normalizedWeights[3] : 0; _normalizedWeight4 = numTokens > 4 ? normalizedWeights[4] : 0; _normalizedWeight5 = numTokens > 5 ? normalizedWeights[5] : 0; _normalizedWeight6 = numTokens > 6 ? normalizedWeights[6] : 0; _normalizedWeight7 = numTokens > 7 ? normalizedWeights[7] : 0; _normalizedWeight8 = numTokens > 8 ? normalizedWeights[8] : 0; _normalizedWeight9 = numTokens > 9 ? normalizedWeights[9] : 0; _normalizedWeight10 = numTokens > 10 ? normalizedWeights[10] : 0; _normalizedWeight11 = numTokens > 11 ? normalizedWeights[11] : 0; _normalizedWeight12 = numTokens > 12 ? normalizedWeights[12] : 0; _normalizedWeight13 = numTokens > 13 ? normalizedWeights[13] : 0; _normalizedWeight14 = numTokens > 14 ? normalizedWeights[14] : 0; _normalizedWeight15 = numTokens > 15 ? normalizedWeights[15] : 0; _normalizedWeight16 = numTokens > 16 ? normalizedWeights[16] : 0; _normalizedWeight17 = numTokens > 17 ? normalizedWeights[17] : 0; _normalizedWeight18 = numTokens > 18 ? normalizedWeights[18] : 0; _normalizedWeight19 = numTokens > 19 ? normalizedWeights[19] : 0; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = numTokens > 2 ? tokens[2] : IERC20(0); _token3 = numTokens > 3 ? tokens[3] : IERC20(0); _token4 = numTokens > 4 ? tokens[4] : IERC20(0); _token5 = numTokens > 5 ? tokens[5] : IERC20(0); _token6 = numTokens > 6 ? tokens[6] : IERC20(0); _token7 = numTokens > 7 ? tokens[7] : IERC20(0); _token8 = numTokens > 8 ? tokens[8] : IERC20(0); _token9 = numTokens > 9 ? tokens[9] : IERC20(0); _token10 = numTokens > 10 ? tokens[10] : IERC20(0); _token11 = numTokens > 11 ? tokens[11] : IERC20(0); _token12 = numTokens > 12 ? tokens[12] : IERC20(0); _token13 = numTokens > 13 ? tokens[13] : IERC20(0); _token14 = numTokens > 14 ? tokens[14] : IERC20(0); _token15 = numTokens > 15 ? tokens[15] : IERC20(0); _token16 = numTokens > 16 ? tokens[16] : IERC20(0); _token17 = numTokens > 17 ? tokens[17] : IERC20(0); _token18 = numTokens > 18 ? tokens[18] : IERC20(0); _token19 = numTokens > 19 ? tokens[19] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = numTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = numTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; _scalingFactor4 = numTokens > 4 ? _computeScalingFactor(tokens[4]) : 0; _scalingFactor5 = numTokens > 5 ? _computeScalingFactor(tokens[5]) : 0; _scalingFactor6 = numTokens > 6 ? _computeScalingFactor(tokens[6]) : 0; _scalingFactor7 = numTokens > 7 ? _computeScalingFactor(tokens[7]) : 0; _scalingFactor8 = numTokens > 8 ? _computeScalingFactor(tokens[8]) : 0; _scalingFactor9 = numTokens > 9 ? _computeScalingFactor(tokens[9]) : 0; _scalingFactor10 = numTokens > 10 ? _computeScalingFactor(tokens[10]) : 0; _scalingFactor11 = numTokens > 11 ? _computeScalingFactor(tokens[11]) : 0; _scalingFactor12 = numTokens > 12 ? _computeScalingFactor(tokens[12]) : 0; _scalingFactor13 = numTokens > 13 ? _computeScalingFactor(tokens[13]) : 0; _scalingFactor14 = numTokens > 14 ? _computeScalingFactor(tokens[14]) : 0; _scalingFactor15 = numTokens > 15 ? _computeScalingFactor(tokens[15]) : 0; _scalingFactor16 = numTokens > 16 ? _computeScalingFactor(tokens[16]) : 0; _scalingFactor17 = numTokens > 17 ? _computeScalingFactor(tokens[17]) : 0; _scalingFactor18 = numTokens > 18 ? _computeScalingFactor(tokens[18]) : 0; _scalingFactor19 = numTokens > 19 ? _computeScalingFactor(tokens[19]) : 0; } function _getNormalizedWeight(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (token == _token0) { return _normalizedWeight0; } else if (token == _token1) { return _normalizedWeight1; } else if (token == _token2) { return _normalizedWeight2; } else if (token == _token3) { return _normalizedWeight3; } else if (token == _token4) { return _normalizedWeight4; } else if (token == _token5) { return _normalizedWeight5; } else if (token == _token6) { return _normalizedWeight6; } else if (token == _token7) { return _normalizedWeight7; } else if (token == _token8) { return _normalizedWeight8; } else if (token == _token9) { return _normalizedWeight9; } else if (token == _token10) { return _normalizedWeight10; } else if (token == _token11) { return _normalizedWeight11; } else if (token == _token12) { return _normalizedWeight12; } else if (token == _token13) { return _normalizedWeight13; } else if (token == _token14) { return _normalizedWeight14; } else if (token == _token15) { return _normalizedWeight15; } else if (token == _token16) { return _normalizedWeight16; } else if (token == _token17) { return _normalizedWeight17; } else if (token == _token18) { return _normalizedWeight18; } else if (token == _token19) { return _normalizedWeight19; } else { _revert(Errors.INVALID_TOKEN); } } function _getNormalizedWeights() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory normalizedWeights = new uint256[](totalTokens); // prettier-ignore { normalizedWeights[0] = _normalizedWeight0; normalizedWeights[1] = _normalizedWeight1; if (totalTokens > 2) { normalizedWeights[2] = _normalizedWeight2; } else { return normalizedWeights; } if (totalTokens > 3) { normalizedWeights[3] = _normalizedWeight3; } else { return normalizedWeights; } if (totalTokens > 4) { normalizedWeights[4] = _normalizedWeight4; } else { return normalizedWeights; } if (totalTokens > 5) { normalizedWeights[5] = _normalizedWeight5; } else { return normalizedWeights; } if (totalTokens > 6) { normalizedWeights[6] = _normalizedWeight6; } else { return normalizedWeights; } if (totalTokens > 7) { normalizedWeights[7] = _normalizedWeight7; } else { return normalizedWeights; } if (totalTokens > 8) { normalizedWeights[8] = _normalizedWeight8; } else { return normalizedWeights; } if (totalTokens > 9) { normalizedWeights[9] = _normalizedWeight9; } else { return normalizedWeights; } if (totalTokens > 10) { normalizedWeights[10] = _normalizedWeight10; } else { return normalizedWeights; } if (totalTokens > 11) { normalizedWeights[11] = _normalizedWeight11; } else { return normalizedWeights; } if (totalTokens > 12) { normalizedWeights[12] = _normalizedWeight12; } else { return normalizedWeights; } if (totalTokens > 13) { normalizedWeights[13] = _normalizedWeight13; } else { return normalizedWeights; } if (totalTokens > 14) { normalizedWeights[14] = _normalizedWeight14; } else { return normalizedWeights; } if (totalTokens > 15) { normalizedWeights[15] = _normalizedWeight15; } else { return normalizedWeights; } if (totalTokens > 16) { normalizedWeights[16] = _normalizedWeight16; } else { return normalizedWeights; } if (totalTokens > 17) { normalizedWeights[17] = _normalizedWeight17; } else { return normalizedWeights; } if (totalTokens > 18) { normalizedWeights[18] = _normalizedWeight18; } else { return normalizedWeights; } if (totalTokens > 19) { normalizedWeights[19] = _normalizedWeight19; } else { return normalizedWeights; } } return normalizedWeights; } function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual override returns (uint256[] memory, uint256) { return (_getNormalizedWeights(), _maxWeightTokenIndex); } function _getMaxTokens() internal pure virtual override returns (uint256) { return _MAX_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. */ function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (token == _token0) { return _scalingFactor0; } else if (token == _token1) { return _scalingFactor1; } else if (token == _token2) { return _scalingFactor2; } else if (token == _token3) { return _scalingFactor3; } else if (token == _token4) { return _scalingFactor4; } else if (token == _token5) { return _scalingFactor5; } else if (token == _token6) { return _scalingFactor6; } else if (token == _token7) { return _scalingFactor7; } else if (token == _token8) { return _scalingFactor8; } else if (token == _token9) { return _scalingFactor9; } else if (token == _token10) { return _scalingFactor10; } else if (token == _token11) { return _scalingFactor11; } else if (token == _token12) { return _scalingFactor12; } else if (token == _token13) { return _scalingFactor13; } else if (token == _token14) { return _scalingFactor14; } else if (token == _token15) { return _scalingFactor15; } else if (token == _token16) { return _scalingFactor16; } else if (token == _token17) { return _scalingFactor17; } else if (token == _token18) { return _scalingFactor18; } else if (token == _token19) { return _scalingFactor19; } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { scalingFactors[0] = _scalingFactor0; scalingFactors[1] = _scalingFactor1; if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; } if (totalTokens > 4) { scalingFactors[4] = _scalingFactor4; } else { return scalingFactors; } if (totalTokens > 5) { scalingFactors[5] = _scalingFactor5; } else { return scalingFactors; } if (totalTokens > 6) { scalingFactors[6] = _scalingFactor6; } else { return scalingFactors; } if (totalTokens > 7) { scalingFactors[7] = _scalingFactor7; } else { return scalingFactors; } if (totalTokens > 8) { scalingFactors[8] = _scalingFactor8; } else { return scalingFactors; } if (totalTokens > 9) { scalingFactors[9] = _scalingFactor9; } else { return scalingFactors; } if (totalTokens > 10) { scalingFactors[10] = _scalingFactor10; } else { return scalingFactors; } if (totalTokens > 11) { scalingFactors[11] = _scalingFactor11; } else { return scalingFactors; } if (totalTokens > 12) { scalingFactors[12] = _scalingFactor12; } else { return scalingFactors; } if (totalTokens > 13) { scalingFactors[13] = _scalingFactor13; } else { return scalingFactors; } if (totalTokens > 14) { scalingFactors[14] = _scalingFactor14; } else { return scalingFactors; } if (totalTokens > 15) { scalingFactors[15] = _scalingFactor15; } else { return scalingFactors; } if (totalTokens > 16) { scalingFactors[16] = _scalingFactor16; } else { return scalingFactors; } if (totalTokens > 17) { scalingFactors[17] = _scalingFactor17; } else { return scalingFactors; } if (totalTokens > 18) { scalingFactors[18] = _scalingFactor18; } else { return scalingFactors; } if (totalTokens > 19) { scalingFactors[19] = _scalingFactor19; } else { return scalingFactors; } } return scalingFactors; } }
/pkg/pool-weighted/contracts/WeightedPoolUserData.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../../solidity-utils/contracts/openzeppelin/IERC20.sol"; library WeightedPoolUserData { // In order to preserve backwards compatibility, make sure new join and exit kinds are added at the end of the enum. enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT, MANAGEMENT_FEE_TOKENS_OUT // for ManagedPool } function joinKind(bytes memory self) internal pure returns (JoinKind) { return abi.decode(self, (JoinKind)); } function exitKind(bytes memory self) internal pure returns (ExitKind) { return abi.decode(self, (ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (JoinKind, uint256, uint256)); } function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) { (, bptAmountOut) = abi.decode(self, (JoinKind, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (ExitKind, uint256[], uint256)); } }
/pkg/solidity-utils/contracts/helpers/Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
/pkg/solidity-utils/contracts/helpers/BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343; uint256 internal constant UNAUTHORIZED_OPERATION = 344; uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; uint256 internal constant NOT_PAUSED = 431; uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432; uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
/pkg/solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BalancerErrors.sol"; import "./CodeDeployer.sol"; /** * @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when * the contract's creation code grows close to 24kB. * * Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB. */ abstract contract BaseSplitCodeFactory { // The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This // means this factory supports contracts with creation code of up to 48kB. // We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because // `extcodecopy` is not available in Solidity. // solhint-disable no-inline-assembly address private immutable _creationCodeContractA; uint256 private immutable _creationCodeSizeA; address private immutable _creationCodeContractB; uint256 private immutable _creationCodeSizeB; /** * @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`. */ constructor(bytes memory creationCode) { uint256 creationCodeSize = creationCode.length; // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents // (A), and another with the remaining half (B). // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during // construction. uint256 creationCodeSizeA = creationCodeSize / 2; _creationCodeSizeA = creationCodeSizeA; uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA; _creationCodeSizeB = creationCodeSizeB; // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place. // Memory: [ code length ] [ A.data ] [ B.data ] // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore // the original length. bytes memory creationCodeA; assembly { creationCodeA := creationCode mstore(creationCodeA, creationCodeSizeA) } // Memory: [ A.length ] [ A.data ] [ B.data ] // ^ creationCodeA _creationCodeContractA = CodeDeployer.deploy(creationCodeA); // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new' // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last // byte to later restore it. bytes memory creationCodeB; bytes32 lastByteA; assembly { // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's // last 32 bytes. creationCodeB := add(creationCode, creationCodeSizeA) lastByteA := mload(creationCodeB) mstore(creationCodeB, creationCodeSizeB) } // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ] // ^ creationCodeA ^ creationCodeB _creationCodeContractB = CodeDeployer.deploy(creationCodeB); // We now restore the original contents of `creationCode` by writing back the original length and A's last byte. assembly { mstore(creationCodeA, creationCodeSize) mstore(creationCodeB, lastByteA) } } /** * @dev Returns the two addresses where the creation code of the contract crated by this factory is stored. */ function getCreationCodeContracts() public view returns (address contractA, address contractB) { return (_creationCodeContractA, _creationCodeContractB); } /** * @dev Returns the creation code of the contract this factory creates. */ function getCreationCode() public view returns (bytes memory) { return _getCreationCodeWithArgs(""); } /** * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`. */ function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) { // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address. // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code, // which would be prohibitively expensive. // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be // overly long) right after the end of the creation code. // Immutable variables cannot be used in assembly, so we store them in the stack first. address creationCodeContractA = _creationCodeContractA; uint256 creationCodeSizeA = _creationCodeSizeA; address creationCodeContractB = _creationCodeContractB; uint256 creationCodeSizeB = _creationCodeSizeB; uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB; uint256 constructorArgsSize = constructorArgs.length; uint256 codeSize = creationCodeSize + constructorArgsSize; assembly { // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length. code := mload(0x40) mstore(0x40, add(code, add(codeSize, 32))) // We now store the length of the code plus constructor arguments. mstore(code, codeSize) // Next, we concatenate the creation code stored in A and B. let dataStart := add(code, 32) extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA) extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB) } // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`. uint256 constructorArgsDataPtr; uint256 constructorArgsCodeDataPtr; assembly { constructorArgsDataPtr := add(constructorArgs, 32) constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize) } _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize); } /** * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the * contract's constructor arguments, in order. */ function _create(bytes memory constructorArgs) internal virtual returns (address) { bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs); address destination; assembly { destination := create(0, add(creationCode, 32), mload(creationCode)) } if (destination == address(0)) { // Bubble up inner revert reason // solhint-disable-next-line no-inline-assembly assembly { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } return destination; } // From // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol function _memcpy( uint256 dest, uint256 src, uint256 len ) private pure { // Copy word-length chunks while possible for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } // Copy remaining bytes uint256 mask = 256**(32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } }
/pkg/solidity-utils/contracts/helpers/CodeDeployer.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; /** * @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as * contract code, which can be retrieved via the `extcodecopy` opcode. */ library CodeDeployer { // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be // stored as its code. // // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the // full code 32 bytes long: // // contract CodeDeployer { // constructor() payable { // uint256 size; // assembly { // size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long // codecopy(0, 32, size) // copy all appended data to memory at position 0 // return(0, size) // return appended data for it to be stored as code // } // } // } // // More specifically, it is composed of the following opcodes (plus padding): // // [1] PUSH1 0x20 // [2] CODESIZE // [3] SUB // [4] DUP1 // [6] PUSH1 0x20 // [8] PUSH1 0x00 // [9] CODECOPY // [11] PUSH1 0x00 // [12] RETURN // // The padding is just the 0xfe sequence (invalid opcode). bytes32 private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe; /** * @dev Deploys a contract with `code` as its code, returning the destination address. * * Reverts if deployment fails. */ function deploy(bytes memory code) internal returns (address destination) { bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE; // solhint-disable-next-line no-inline-assembly assembly { let codeLength := mload(code) // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply // replace it with the deployer creation code (which is exactly 32 bytes long). mstore(code, deployerCreationCode) // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data // contents. This is exactly what the deployer expects to receive when created. destination := create(0, code, add(codeLength, 32)) // Finally, we restore the original length in order to not mutate `code`. mstore(code, codeLength) } // The create opcode returns the zero address when contract creation fails, so we revert if this happens. _require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED); } }
/pkg/solidity-utils/contracts/helpers/IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
/pkg/solidity-utils/contracts/helpers/ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
/pkg/solidity-utils/contracts/helpers/ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
/pkg/solidity-utils/contracts/helpers/InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
/pkg/solidity-utils/contracts/helpers/TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Reverts if the contract is not paused. */ function _ensurePaused() internal view { _require(!_isNotPaused(), Errors.NOT_PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
/pkg/solidity-utils/contracts/helpers/WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. * * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location), * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive, * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and * unpacking is therefore the preferred approach. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_5 = 2**(5) - 1; uint256 private constant _MASK_7 = 2**(7) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_96 = 2**(96) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes. */ function insertUint5( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes. */ function insertUint7( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_5; } /** * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_7; } /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 96 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint96(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_96; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
/pkg/solidity-utils/contracts/math/FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
/pkg/solidity-utils/contracts/math/LogExpMath.sol
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
/pkg/solidity-utils/contracts/math/Math.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library. */ library Math { /** * @dev Returns the absolute value of a signed integer. */ function abs(int256 a) internal pure returns (uint256) { return a > 0 ? uint256(a) : uint256(-a); } /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
/pkg/solidity-utils/contracts/misc/IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
/pkg/solidity-utils/contracts/openzeppelin/EIP712.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
/pkg/solidity-utils/contracts/openzeppelin/ERC20.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/pkg/solidity-utils/contracts/openzeppelin/ERC20Permit.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
/pkg/solidity-utils/contracts/openzeppelin/IERC20.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/pkg/solidity-utils/contracts/openzeppelin/IERC20Permit.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
/pkg/solidity-utils/contracts/openzeppelin/SafeMath.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
/pkg/vault/contracts/interfaces/IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
/pkg/vault/contracts/interfaces/IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
/pkg/vault/contracts/interfaces/IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
/pkg/vault/contracts/interfaces/IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "../../../solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
/pkg/vault/contracts/interfaces/IMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
/pkg/vault/contracts/interfaces/IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../../solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
/pkg/vault/contracts/interfaces/IProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../../../solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
/pkg/vault/contracts/interfaces/IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "../../../solidity-utils/contracts/openzeppelin/IERC20.sol"; import "../../../solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "../../../solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "../../../solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"vault","internalType":"contract IVault"}]},{"type":"event","name":"PoolCreated","inputs":[{"type":"address","name":"pool","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"create","inputs":[{"type":"string","name":"name","internalType":"string"},{"type":"string","name":"symbol","internalType":"string"},{"type":"address[]","name":"tokens","internalType":"contract IERC20[]"},{"type":"uint256[]","name":"weights","internalType":"uint256[]"},{"type":"uint256","name":"swapFeePercentage","internalType":"uint256"},{"type":"address","name":"owner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes","name":"","internalType":"bytes"}],"name":"getCreationCode","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"contractA","internalType":"address"},{"type":"address","name":"contractB","internalType":"address"}],"name":"getCreationCodeContracts","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"pauseWindowDuration","internalType":"uint256"},{"type":"uint256","name":"bufferPeriodDuration","internalType":"uint256"}],"name":"getPauseConfiguration","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract IVault"}],"name":"getVault","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"isPoolFromFactory","inputs":[{"type":"address","name":"pool","internalType":"address"}]}]
Contract Creation Code
0x6101406040523480156200001257600080fd5b506040516200831c3803806200831c8339810160408190526200003591620001c3565b80604051806020016200004890620001b5565b601f1982820381018352601f909101166040528051819060006002820460a081905280830360e0819052818552909150836200009081620000f9602090811b620002be17901c565b60601b6001600160601b0319166080528285018051838252620000bf82620000f9602090811b620002be17901c565b6001600160601b0319606091821b811660c0529690935290529590951b90911661010052505050426276a700016101205250620001f39050565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f09084529150620001476001600160a01b03831615156101ac6200014d565b50919050565b816200015e576200015e8162000162565b5050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6176fb8062000c2183390190565b600060208284031215620001d5578081fd5b81516001600160a01b0381168114620001ec578182fd5b9392505050565b60805160601c60a05160c05160601c60e0516101005160601c610120516109cc6200025560003980610173528061019c5250806101fb52508061031852508061014a5280610394525080610339525080610129528061037052506109cc6000f3fe608060405234801561001057600080fd5b50600436106100715760003560e01c80636634b753116100505780636634b753146100c05780638d928af8146100e0578063fbce0393146100f557610071565b8062c194db14610076578063174481fa146100945780632da47c40146100aa575b600080fd5b61007e610108565b60405161008b919061084e565b60405180910390f35b61009c610127565b60405161008b929190610829565b6100b261016d565b60405161008b92919061092e565b6100d36100ce36600461066e565b6101d7565b60405161008b9190610843565b6100e86101f9565b60405161008b9190610815565b6100e861010336600461068a565b61021d565b606061012260405180602001604052806000815250610310565b905090565b7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000009091565b600080427f00000000000000000000000000000000000000000000000000000000000000008110156101c957807f000000000000000000000000000000000000000000000000000000000000000003925062278d0091506101d2565b60009250600091505b509091565b6001600160a01b03811660009081526020819052604090205460ff165b919050565b7f000000000000000000000000000000000000000000000000000000000000000090565b600080600061022a61016d565b915091506102b16102396101f9565b8a8a8a8a8c5167ffffffffffffffff8111801561025557600080fd5b5060405190808252806020026020018201604052801561027f578160200160208202803683370190505b508b89898d60405160200161029d9a99989796959493929190610861565b6040516020818303038152906040526103e9565b9998505050505050505050565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f0908452915061030a6001600160a01b03831615156101ac610449565b50919050565b8051604080517f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000818101858101848101602090810190965280855293957f00000000000000000000000000000000000000000000000000000000000000009592947f000000000000000000000000000000000000000000000000000000000000000094938801866000828a3c846000888301883c50602089810190898501016103db81838661045b565b505050505050505050919050565b6000806103f583610499565b6001600160a01b038116600081815260208190526040808220805460ff191660011790555192935090917f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a292915050565b8161045757610457816104d4565b5050565b5b6020811061047b578151835260209283019290910190601f190161045c565b905182516020929092036101000a6000190180199091169116179052565b600060606104a683610310565b905060008151602083016000f090506001600160a01b0381166104cd573d6000803e3d6000fd5b9392505050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b80356101f48161097e565b600082601f830112610542578081fd5b813561055561055082610960565b61093c565b81815291506020808301908481018184028601820187101561057657600080fd5b60005b8481101561059e57813561058c8161097e565b84529282019290820190600101610579565b505050505092915050565b600082601f8301126105b9578081fd5b81356105c761055082610960565b8181529150602080830190848101818402860182018710156105e857600080fd5b60005b8481101561059e578135845292820192908201906001016105eb565b600082601f830112610617578081fd5b813567ffffffffffffffff81111561062b57fe5b61063e601f8201601f191660200161093c565b915080825283602082850101111561065557600080fd5b8060208401602084013760009082016020015292915050565b60006020828403121561067f578081fd5b81356104cd8161097e565b60008060008060008060c087890312156106a2578182fd5b863567ffffffffffffffff808211156106b9578384fd5b6106c58a838b01610607565b975060208901359150808211156106da578384fd5b6106e68a838b01610607565b965060408901359150808211156106fb578384fd5b6107078a838b01610532565b9550606089013591508082111561071c578384fd5b5061072989828a016105a9565b9350506080870135915061073f60a08801610527565b90509295509295509295565b6001600160a01b03169052565b6000815180845260208085019450808401835b838110156107905781516001600160a01b03168752958201959082019060010161076b565b509495945050505050565b6000815180845260208085019450808401835b83811015610790578151875295820195908201906001016107ae565b60008151808452815b818110156107ef576020818501810151868301820152016107d3565b818111156108005782602083870101525b50601f01601f19169290920160200192915050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b901515815260200190565b6000602082526104cd60208301846107ca565b60006101406001600160a01b03808e168452602082818601526108868386018f6107ca565b9250848303604086015261089a838e6107ca565b85810360608701528c51808252828e01945090820190855b818110156108d05785518516835294830194918301916001016108b2565b505085810360808701526108e4818d61079b565b935050505082810360a08401526108fb8189610758565b9150508560c08301528460e08301528361010083015261091f61012083018461074b565b9b9a5050505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff8111828210171561095857fe5b604052919050565b600067ffffffffffffffff82111561097457fe5b5060209081020190565b6001600160a01b038116811461099357600080fd5b5056fea26469706673582212203c2bc286f0670d0a20e77c2ad39f4b208e28d2f017a0e05838956e688516e42364736f6c634300070300336109806040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620076fb380380620076fb8339810160408190526200005a9162001400565b8989898988888888888886516002146200007657600162000079565b60025b8989898989898989828289898d8280604051806040016040528060018152602001603160f81b81525085858a336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b81525050508160039080519060200190620000f19291906200115b565b508051620001079060049060208401906200115b565b505060058054601260ff1990911617905550815160209283012060c052805191012060e052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005260601b6001600160601b03191661014052506200017a90506276a70083111561019462000e9e565b6200018e62278d0082111561019562000e9e565b4290910161016081905201610180528551620001b0906002111560c862000e9e565b620001ca620001be62000eb3565b8751111560c962000e9e565b620001e08662000eb860201b62000e521760201c565b620001eb8462000ec4565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200021c908d90600401620015dd565b602060405180830381600087803b1580156200023757600080fd5b505af11580156200024c573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002729190620013e7565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002a79084908b908b9060040162001543565b600060405180830381600087803b158015620002c257600080fd5b505af1158015620002d7573d6000803e3d6000fd5b50505050806101a0818152505050505050505050505050505050505050505050506000875190506200031681885162000f5060201b62000e5c1760201c565b6101c081905260008080805b848160ff161015620003a15760008b8260ff16815181106200034057fe5b6020026020010151905062000368662386f26fc1000082101561012e62000e9e60201b60201c565b62000382818662000f5f60201b62000e691790919060201c565b94508281111562000397578160ff1693508092505b5060010162000322565b50620003ba670de0b6b3a7640000841461013462000e9e565b6106e082905289518a90600090620003ce57fe5b6020026020010151610700818152505089600181518110620003ec57fe5b60200260200101516107208181525050600284116200040d57600062000424565b896002815181106200041b57fe5b60200260200101515b61074052600384116200043957600062000450565b896003815181106200044757fe5b60200260200101515b6107605260048411620004655760006200047c565b896004815181106200047357fe5b60200260200101515b610780526005841162000491576000620004a8565b896005815181106200049f57fe5b60200260200101515b6107a05260068411620004bd576000620004d4565b89600681518110620004cb57fe5b60200260200101515b6107c05260078411620004e957600062000500565b89600781518110620004f757fe5b60200260200101515b6107e05260088411620005155760006200052c565b896008815181106200052357fe5b60200260200101515b61080052600984116200054157600062000558565b896009815181106200054f57fe5b60200260200101515b61082052600a84116200056d57600062000584565b89600a815181106200057b57fe5b60200260200101515b61084052600b841162000599576000620005b0565b89600b81518110620005a757fe5b60200260200101515b61086052600c8411620005c5576000620005dc565b89600c81518110620005d357fe5b60200260200101515b61088052600d8411620005f157600062000608565b89600d81518110620005ff57fe5b60200260200101515b6108a052600e84116200061d57600062000634565b89600e815181106200062b57fe5b60200260200101515b6108c052600f84116200064957600062000660565b89600f815181106200065757fe5b60200260200101515b6108e05260108411620006755760006200068c565b896010815181106200068357fe5b60200260200101515b6109005260118411620006a1576000620006b8565b89601181518110620006af57fe5b60200260200101515b6109205260128411620006cd576000620006e4565b89601281518110620006db57fe5b60200260200101515b6109405260138411620006f957600062000710565b896013815181106200070757fe5b60200260200101515b610960528a518b906000906200072257fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b815250508a6001815181106200075557fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b81525050600284116200078b576000620007a2565b8a6002815181106200079957fe5b60200260200101515b60601b6001600160601b0319166102205260038411620007c4576000620007db565b8a600381518110620007d257fe5b60200260200101515b60601b6001600160601b0319166102405260048411620007fd57600062000814565b8a6004815181106200080b57fe5b60200260200101515b60601b6001600160601b0319166102605260058411620008365760006200084d565b8a6005815181106200084457fe5b60200260200101515b60601b6001600160601b03191661028052600684116200086f57600062000886565b8a6006815181106200087d57fe5b60200260200101515b60601b6001600160601b0319166102a05260078411620008a8576000620008bf565b8a600781518110620008b657fe5b60200260200101515b60601b6001600160601b0319166102c05260088411620008e1576000620008f8565b8a600881518110620008ef57fe5b60200260200101515b60601b6001600160601b0319166102e052600984116200091a57600062000931565b8a6009815181106200092857fe5b60200260200101515b60601b6001600160601b03191661030052600a8411620009535760006200096a565b8a600a815181106200096157fe5b60200260200101515b60601b6001600160601b03191661032052600b84116200098c576000620009a3565b8a600b815181106200099a57fe5b60200260200101515b60601b6001600160601b03191661034052600c8411620009c5576000620009dc565b8a600c81518110620009d357fe5b60200260200101515b60601b6001600160601b03191661036052600d8411620009fe57600062000a15565b8a600d8151811062000a0c57fe5b60200260200101515b60601b6001600160601b03191661038052600e841162000a3757600062000a4e565b8a600e8151811062000a4557fe5b60200260200101515b60601b6001600160601b0319166103a052600f841162000a7057600062000a87565b8a600f8151811062000a7e57fe5b60200260200101515b60601b6001600160601b0319166103c0526010841162000aa957600062000ac0565b8a60108151811062000ab757fe5b60200260200101515b60601b6001600160601b0319166103e0526011841162000ae257600062000af9565b8a60118151811062000af057fe5b60200260200101515b60601b6001600160601b031916610400526012841162000b1b57600062000b32565b8a60128151811062000b2957fe5b60200260200101515b60601b6001600160601b031916610420526013841162000b5457600062000b6b565b8a60138151811062000b6257fe5b60200260200101515b6001600160a01b0316610440816001600160a01b031660601b8152505062000bae8b60008151811062000b9a57fe5b602002602001015162000f7a60201b60201c565b610460528a5162000bc7908c90600190811062000b9a57fe5b610480526002841162000bdc57600062000bee565b62000bee8b60028151811062000b9a57fe5b6104a0526003841162000c0357600062000c15565b62000c158b60038151811062000b9a57fe5b6104c0526004841162000c2a57600062000c3c565b62000c3c8b60048151811062000b9a57fe5b6104e0526005841162000c5157600062000c63565b62000c638b60058151811062000b9a57fe5b610500526006841162000c7857600062000c8a565b62000c8a8b60068151811062000b9a57fe5b610520526007841162000c9f57600062000cb1565b62000cb18b60078151811062000b9a57fe5b610540526008841162000cc657600062000cd8565b62000cd88b60088151811062000b9a57fe5b610560526009841162000ced57600062000cff565b62000cff8b60098151811062000b9a57fe5b61058052600a841162000d1457600062000d26565b62000d268b600a8151811062000b9a57fe5b6105a052600b841162000d3b57600062000d4d565b62000d4d8b600b8151811062000b9a57fe5b6105c052600c841162000d6257600062000d74565b62000d748b600c8151811062000b9a57fe5b6105e052600d841162000d8957600062000d9b565b62000d9b8b600d8151811062000b9a57fe5b61060052600e841162000db057600062000dc2565b62000dc28b600e8151811062000b9a57fe5b61062052600f841162000dd757600062000de9565b62000de98b600f8151811062000b9a57fe5b610640526010841162000dfe57600062000e10565b62000e108b60108151811062000b9a57fe5b610660526011841162000e2557600062000e37565b62000e378b60118151811062000b9a57fe5b610680526012841162000e4c57600062000e5e565b62000e5e8b60128151811062000b9a57fe5b6106a0526013841162000e7357600062000e85565b62000e858b60138151811062000b9a57fe5b6106c05250620016539c50505050505050505050505050565b8162000eaf5762000eaf816200104e565b5050565b601490565b8062000eaf81620010a1565b62000ed964e8d4a5100082101560cb62000e9e565b62000ef167016345785d8a000082111560ca62000e9e565b62000f108160c06008546200112e60201b62000e82179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9062000f45908390620015f2565b60405180910390a150565b62000eaf828214606762000e9e565b600082820162000f73848210158362000e9e565b9392505050565b60006001600160a01b03821630141562000f9e5750670de0b6b3a764000062001049565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b15801562000fda57600080fd5b505afa15801562000fef573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062001015919062001520565b60ff1690506000620010346012836200114360201b62000e981760201c565b905080600a0a670de0b6b3a764000002925050505b919050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620010b2576200112b565b600081600081518110620010c257fe5b602002602001015190506000600190505b825181101562001128576000838281518110620010ec57fe5b602002602001015190506200111d816001600160a01b0316846001600160a01b031610606562000e9e60201b60201c565b9150600101620010d3565b50505b50565b6001600160401b03811b1992909216911b1790565b60006200115583831115600162000e9e565b50900390565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106200119e57805160ff1916838001178555620011ce565b82800160010185558215620011ce579182015b82811115620011ce578251825591602001919060010190620011b1565b50620011dc929150620011e0565b5090565b5b80821115620011dc5760008155600101620011e1565b805162001049816200163d565b600082601f83011262001215578081fd5b81516200122c62001226826200161f565b620015fb565b8181529150602080830190848101818402860182018710156200124e57600080fd5b60005b848110156200127a57815162001267816200163d565b8452928201929082019060010162001251565b505050505092915050565b600082601f83011262001296578081fd5b8151620012a762001226826200161f565b818152915060208083019084810181840286018201871015620012c957600080fd5b60005b848110156200127a578151620012e2816200163d565b84529282019290820190600101620012cc565b600082601f83011262001306578081fd5b81516200131762001226826200161f565b8181529150602080830190848101818402860182018710156200133957600080fd5b60005b848110156200127a578151845292820192908201906001016200133c565b600082601f8301126200136b578081fd5b81516001600160401b038111156200137f57fe5b602062001395601f8301601f19168201620015fb565b92508183528481838601011115620013ac57600080fd5b60005b82811015620013cc578481018201518482018301528101620013af565b82811115620013de5760008284860101525b50505092915050565b600060208284031215620013f9578081fd5b5051919050565b6000806000806000806000806000806101408b8d03121562001420578586fd5b6200142b8b620011f7565b60208c0151909a506001600160401b038082111562001448578788fd5b620014568e838f016200135a565b9a5060408d01519150808211156200146c578788fd5b6200147a8e838f016200135a565b995060608d015191508082111562001490578788fd5b6200149e8e838f0162001285565b985060808d0151915080821115620014b4578788fd5b620014c28e838f01620012f5565b975060a08d0151915080821115620014d8578687fd5b50620014e78d828e0162001204565b95505060c08b0151935060e08b015192506101008b015191506200150f6101208c01620011f7565b90509295989b9194979a5092959850565b60006020828403121562001532578081fd5b815160ff8116811462000f73578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b818110156200158e5784516001600160a01b03168352938301939183019160010162001567565b505084810360408601528551808252908201925081860190845b81811015620015cf5782516001600160a01b031685529383019391830191600101620015a8565b509298975050505050505050565b6020810160038310620015ec57fe5b91905290565b90815260200190565b6040518181016001600160401b03811182821017156200161757fe5b604052919050565b60006001600160401b038211156200163357fe5b5060209081020190565b6001600160a01b03811681146200112b57600080fd5b60805160a05160601c60c05160e05161010051610120516101405160601c61016051610180516101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c6102805160601c6102a05160601c6102c05160601c6102e05160601c6103005160601c6103205160601c6103405160601c6103605160601c6103805160601c6103a05160601c6103c05160601c6103e05160601c6104005160601c6104205160601c6104405160601c61046051610480516104a0516104c0516104e05161050051610520516105405161056051610580516105a0516105c0516105e05161060051610620516106405161066051610680516106a0516106c0516106e05161070051610720516107405161076051610780516107a0516107c0516107e05161080051610820516108405161086051610880516108a0516108c0516108e05161090051610920516109405161096051615c5c62001a9f60003980612cfa5280613a2a525080612cb752806139c9525080612c745280613968525080612c315280613907525080612bee52806138a6525080612bab5280613845525080612b6852806137e4525080612b255280613783525080612ae25280613722525080612a9f52806136c1525080612a5c5280613660525080612a1952806135ff5250806129d6528061359e525080612993528061353d52508061295052806134dc52508061290d528061347b5250806128ca528061341a52508061288752806133b9525080612844528061335852508061280a52806132f752508061262a52508061157b528061248752508061153852806124265250806114f552806123c55250806114b2528061236452508061146f528061230352508061142c52806122a25250806113e952806122415250806113a652806121e0525080611363528061217f525080611320528061211e5250806112dd52806120bd52508061129a528061205c5250806112575280611ffb5250806112145280611f9a5250806111d15280611f3952508061118e5280611ed852508061114b5280611e775250806110fa5280611e165250806110b75280611db552508061107d5280611d5452508061244c52806139ef5250806123eb528061398e52508061238a528061392d52508061232952806138cc5250806122c8528061386b525080612267528061380a52508061220652806137a95250806121a5528061374852508061214452806136e75250806120e35280613686525080612082528061362552508061202152806135c4525080611fc05280613563525080611f5f5280613502525080611efe52806134a1525080611e9d5280613440525080611e3c52806133df525080611ddb528061337e525080611d7a528061331d525080611d1952806132bc5250806118d3525080610627525080611005525080610fe1525080610890525080610bc65250806116ab5250806116ed5250806116cc52508061086c5250806107f65250615c5c6000f3fe608060405234801561001057600080fd5b50600436106102265760003560e01c806374f3b0091161012a5780639d2c110c116100bd578063c0ff1a151161008c578063d5c096c411610071578063d5c096c414610457578063dd62ed3e1461046a578063f89f27ed1461047d57610226565b8063c0ff1a151461043c578063d505accf1461044457610226565b80639d2c110c146103fb578063a457c2d71461040e578063a9059cbb14610421578063aaabadc51461043457610226565b8063893d20e8116100f9578063893d20e8146103ce5780638d928af8146103e357806395d89b41146103eb5780639b02cdde146103f357610226565b806374f3b009146103745780637ecebe0014610395578063851c1bb3146103a857806387ec6817146103bb57610226565b80633644e515116101bd57806350dd6ed91161018c5780636028bfd4116101715780636028bfd414610338578063679aefce1461035957806370a082311461036157610226565b806350dd6ed91461031d57806355c676281461033057610226565b80633644e515146102e757806338e9922e146102ef57806338fff2d014610302578063395093511461030a57610226565b80631c0de051116101f95780631c0de051146102935780631dd746ea146102aa57806323b872dd146102bf578063313ce567146102d257610226565b806306fdde031461022b578063095ea7b31461024957806316c38b3c1461026957806318160ddd1461027e575b600080fd5b610233610485565b6040516102409190615b7a565b60405180910390f35b61025c610257366004615455565b61051c565b6040516102409190615a81565b61027c61027736600461554c565b610533565b005b610286610547565b6040516102409190615aa4565b61029b61054d565b60405161024093929190615a8c565b6102b2610576565b6040516102409190615a49565b61025c6102cd3660046153a0565b610585565b6102da6105f9565b6040516102409190615ba6565b610286610602565b61027c6102fd366004615915565b61060c565b610286610625565b61025c610318366004615455565b610649565b61027c61032b3660046156c5565b610684565b6102866106a2565b61034b610346366004615584565b6106b3565b604051610240929190615b8d565b6102866106ea565b61028661036f36600461534c565b610715565b610387610382366004615584565b610734565b604051610240929190615a5c565b6102866103a336600461534c565b6107d7565b6102866103b6366004615681565b6107f2565b61034b6103c9366004615584565b610844565b6103d661086a565b6040516102409190615a35565b6103d661088e565b6102336108b2565b610286610913565b61028661040936600461581e565b610919565b61025c61041c366004615455565b610a77565b61025c61042f366004615455565b610ab5565b6103d6610ac2565b610286610acc565b61027c6104523660046153e0565b610b91565b610387610465366004615584565b610cda565b610286610478366004615368565b610e0b565b6102b2610e48565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105115780601f106104e657610100808354040283529160200191610511565b820191906000526020600020905b8154815290600101906020018083116104f457829003601f168201915b505050505090505b90565b6000610529338484610eae565b5060015b92915050565b61053b610f16565b61054481610f44565b50565b60025490565b600080600061055a610fc2565b159250610565610fdf565b915061056f611003565b9050909192565b6060610580611027565b905090565b6000806105928533610e0b565b90506105b6336001600160a01b03871614806105ae5750838210155b61019e6115b9565b6105c18585856115c7565b336001600160a01b038616148015906105dc57506000198114155b156105ee576105ee8533858403610eae565b506001949350505050565b60055460ff1690565b60006105806116a7565b610614610f16565b61061c611744565b61054481611759565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161052991859061067f9086610e69565b610eae565b61068c610f16565b610694611744565b61069e82826117c4565b5050565b6008546000906105809060c06118c3565b600060606106c986516106c46118d1565b610e5c565b6106de898989898989896118f56119c5611a2b565b97509795505050505050565b60006105806106f7610547565b61070f610702610acc565b61070a6118d1565b611b4e565b90611b72565b6001600160a01b0381166000908152602081905260409020545b919050565b6060808861075e61074361088e565b6001600160a01b0316336001600160a01b03161460cd6115b9565b610773610769610625565b82146101f46115b9565b606061077d611027565b90506107898882611bc3565b600060608061079e8e8e8e8e8e8e8a8f6118f5565b9250925092506107ae8d84611c24565b6107b882856119c5565b6107c281856119c5565b909550935050505b5097509795505050505050565b6001600160a01b031660009081526006602052604090205490565b60007f0000000000000000000000000000000000000000000000000000000000000000826040516020016108279291906159f2565b604051602081830303815290604052805190602001209050919050565b6000606061085586516106c46118d1565b6106de89898989898989611c2e611cb4611a2b565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105115780601f106104e657610100808354040283529160200191610511565b60095490565b6000836080015161092b61074361088e565b610936610769610625565b60006109458660200151611d15565b905060006109568760400151611d15565b905060008751600181111561096757fe5b14156109f757600061097c88606001516124b6565b905060008189606001510390506109a0896020015161099b83876124d7565b6124e3565b606089018290526109b188856124d7565b97506109bd87846124d7565b96506109cd8960600151856124d7565b60608a015260006109df8a8a8a6124f5565b90506109eb8185612530565b96505050505050610a6f565b610a0186836124d7565b9550610a0d85826124d7565b9450610a1d8760600151826124d7565b60608801526000610a2f88888861253c565b9050610a3b818461256f565b90506000610a488261257b565b905060008282039050610a638a6020015161099b83886124d7565b509450610a6f92505050565b509392505050565b600080610a843385610e0b565b9050808310610a9e57610a9933856000610eae565b610aab565b610aab3385858403610eae565b5060019392505050565b60006105293384846115c7565b60006105806125a1565b60006060610ad861088e565b6001600160a01b031663f94d4668610aee610625565b6040518263ffffffff1660e01b8152600401610b0a9190615aa4565b60006040518083038186803b158015610b2257600080fd5b505afa158015610b36573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610b5e9190810190615480565b50915050610b7381610b6e611027565b611bc3565b6060610b7d61261b565b509050610b8a818361264f565b9250505090565b610b9f8442111560d16115b9565b6001600160a01b0387166000908152600660209081526040808320549051909291610bf6917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615acc565b6040516020818303038152906040528051906020012090506000610c19826126c1565b9050600060018288888860405160008152602001604052604051610c409493929190615b5c565b6020604051602081039080840390855afa158015610c62573d6000803e3d6000fd5b5050604051601f1901519150610ca490506001600160a01b03821615801590610c9c57508b6001600160a01b0316826001600160a01b0316145b6101f86115b9565b6001600160a01b038b166000908152600660205260409020600185019055610ccd8b8b8b610eae565b5050505050505050505050565b60608088610ce961074361088e565b610cf4610769610625565b6060610cfe611027565b9050610d08610547565b610dbb5760006060610d1d8d8d8d868b6126dd565b91509150610d36610d2c612778565b83101560cc6115b9565b610d486000610d43612778565b61277f565b610d5b8b610d54612778565b840361277f565b610d658184611cb4565b80610d6e6118d1565b67ffffffffffffffff81118015610d8457600080fd5b50604051908082528060200260200182016040528015610dae578160200160208202803683370190505b50955095505050506107ca565b610dc58882611bc3565b6000606080610dda8e8e8e8e8e8e8a8f611c2e565b925092509250610dea8c8461277f565b610df48285611cb4565b610dfe81856119c5565b90955093506107ca915050565b6000610e1561088e565b6001600160a01b0316826001600160a01b03161415610e37575060001961052d565b610e418383612789565b905061052d565b60606105806127b4565b8061069e81612d26565b61069e81831460676115b9565b6000828201610e7b84821015836115b9565b9392505050565b67ffffffffffffffff811b1992909216911b1790565b6000610ea88383111560016115b9565b50900390565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590610f09908590615aa4565b60405180910390a3505050565b6000610f2d6000356001600160e01b0319166107f2565b9050610544610f3c8233612d9f565b6101916115b9565b8015610f6457610f5f610f55610fdf565b42106101936115b9565b610f79565b610f79610f6f611003565b42106101a96115b9565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490610fb7908390615a81565b60405180910390a150565b6000610fcc611003565b42118061058057505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b606060006110336118d1565b905060608167ffffffffffffffff8111801561104e57600080fd5b50604051908082528060200260200182016040528015611078578160200160208202803683370190505b5090507f0000000000000000000000000000000000000000000000000000000000000000816000815181106110a957fe5b6020026020010181815250507f0000000000000000000000000000000000000000000000000000000000000000816001815181106110e357fe5b6020026020010181815250506002821115611137577f00000000000000000000000000000000000000000000000000000000000000008160028151811061112657fe5b602002602001018181525050611140565b91506105199050565b6003821115611137577f00000000000000000000000000000000000000000000000000000000000000008160038151811061117757fe5b6020026020010181815250506004821115611137577f0000000000000000000000000000000000000000000000000000000000000000816004815181106111ba57fe5b6020026020010181815250506005821115611137577f0000000000000000000000000000000000000000000000000000000000000000816005815181106111fd57fe5b6020026020010181815250506006821115611137577f00000000000000000000000000000000000000000000000000000000000000008160068151811061124057fe5b6020026020010181815250506007821115611137577f00000000000000000000000000000000000000000000000000000000000000008160078151811061128357fe5b6020026020010181815250506008821115611137577f0000000000000000000000000000000000000000000000000000000000000000816008815181106112c657fe5b6020026020010181815250506009821115611137577f00000000000000000000000000000000000000000000000000000000000000008160098151811061130957fe5b602002602001018181525050600a821115611137577f000000000000000000000000000000000000000000000000000000000000000081600a8151811061134c57fe5b602002602001018181525050600b821115611137577f000000000000000000000000000000000000000000000000000000000000000081600b8151811061138f57fe5b602002602001018181525050600c821115611137577f000000000000000000000000000000000000000000000000000000000000000081600c815181106113d257fe5b602002602001018181525050600d821115611137577f000000000000000000000000000000000000000000000000000000000000000081600d8151811061141557fe5b602002602001018181525050600e821115611137577f000000000000000000000000000000000000000000000000000000000000000081600e8151811061145857fe5b602002602001018181525050600f821115611137577f000000000000000000000000000000000000000000000000000000000000000081600f8151811061149b57fe5b6020026020010181815250506010821115611137577f0000000000000000000000000000000000000000000000000000000000000000816010815181106114de57fe5b6020026020010181815250506011821115611137577f00000000000000000000000000000000000000000000000000000000000000008160118151811061152157fe5b6020026020010181815250506012821115611137577f00000000000000000000000000000000000000000000000000000000000000008160128151811061156457fe5b6020026020010181815250506013821115611137577f0000000000000000000000000000000000000000000000000000000000000000816013815181106115a757fe5b60200260200101818152505091505090565b8161069e5761069e81612e88565b6115de6001600160a01b03841615156101986115b9565b6115f56001600160a01b03831615156101996115b9565b611600838383611a26565b6001600160a01b03831660009081526020819052604090205461162690826101a0612edb565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546116559082610e69565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90610f09908590615aa4565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611714612ef1565b30604051602001611729959493929190615b00565b60405160208183030381529060405280519060200120905090565b61175761174f610fc2565b6101926115b9565b565b61176c64e8d4a5100082101560cb6115b9565b61178267016345785d8a000082111560ca6115b9565b600854611791908260c0610e82565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90610fb7908390615aa4565b60006117ce610625565b905060006117da61088e565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611807929190615b45565b60806040518083038186803b15801561181f57600080fd5b505afa158015611833573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611857919061592d565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d4925061188b915085908790600401615b2c565b600060405180830381600087803b1580156118a557600080fd5b505af11580156118b9573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006060806060600061190661261b565b91509150611912610fc2565b1561194a576000611923838c61264f565b90506119358b8484600954858e612ef5565b93506119448b85610e98612fa6565b50611996565b6119526118d1565b67ffffffffffffffff8111801561196857600080fd5b50604051908082528060200260200182016040528015611992578160200160208202803683370190505b5092505b6119a28a838989613011565b90955093506119b28a858461309f565b6009555050985098509895505050505050565b60005b6119d06118d1565b811015611a2657611a078382815181106119e657fe5b60200260200101518383815181106119fa57fe5b6020026020010151611b72565b838281518110611a1357fe5b60209081029190910101526001016119c8565b505050565b333014611ae9576000306001600160a01b0316600036604051611a4f929190615a0a565b6000604051808303816000865af19150503d8060008114611a8c576040519150601f19603f3d011682016040523d82523d6000602084013e611a91565b606091505b505090508060008114611aa057fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611acb573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611af3611027565b9050611aff8782611bc3565b60006060611b178c8c8c8c8c8c898d8d63ffffffff16565b5091509150611b2a81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b6000828202610e7b841580611b6b575083858381611b6857fe5b04145b60036115b9565b6000611b8182151560046115b9565b82611b8e5750600061052d565b670de0b6b3a764000083810290611bb190858381611ba857fe5b041460056115b9565b828181611bba57fe5b0491505061052d565b60005b611bce6118d1565b811015611a2657611c05838281518110611be457fe5b6020026020010151838381518110611bf857fe5b60200260200101516130b8565b838281518110611c1157fe5b6020908102919091010152600101611bc6565b61069e82826130e4565b6000606080611c3b611744565b60606000611c4761261b565b915091506000611c57838c61264f565b90506060611c6b8c8585600954868f612ef5565b9050611c7a8c82610e98612fa6565b60006060611c8a8e878d8d6131a0565b91509150611c998e8288613219565b60095590975095509350505050985098509895505050505050565b60005b611cbf6118d1565b811015611a2657611cf6838281518110611cd557fe5b6020026020010151838381518110611ce957fe5b6020026020010151613228565b838281518110611d0257fe5b6020908102919091010152600101611cb7565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611d7857507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611dd957507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e3a57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e9b57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611efc57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f5d57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611fbe57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561201f57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561208057507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156120e157507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561214257507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156121a357507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561220457507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561226557507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156122c657507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561232757507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561238857507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156123e957507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561244a57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156124ab57507f000000000000000000000000000000000000000000000000000000000000000061072f565b61072f610135612e88565b6000806124cb6124c46106a2565b8490613276565b9050610e7b8382610e98565b6000610e7b83836130b8565b61069e6124ef836132b2565b8261069e565b60006124ff611744565b6125288361251086602001516132b8565b8461251e88604001516132b8565b8860600151613a4e565b949350505050565b6000610e7b8383611b72565b6000612546611744565b6125288361255786602001516132b8565b8461256588604001516132b8565b8860600151613acb565b6000610e7b8383613228565b600061052d61259a61258b6106a2565b670de0b6b3a764000090610e98565b8390613228565b60006125ab61088e565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156125e357600080fd5b505afa1580156125f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061058091906156a9565b606060006126276127b4565b927f000000000000000000000000000000000000000000000000000000000000000092509050565b670de0b6b3a764000060005b83518110156126b1576126a76126a085838151811061267657fe5b602002602001015185848151811061268a57fe5b6020026020010151613b4190919063ffffffff16565b83906130b8565b915060010161265b565b5061052d600082116101376115b9565b60006126cb6116a7565b82604051602001610827929190615a1a565b600060606126e9611744565b60006126f484613b90565b905061270f600082600381111561270757fe5b1460ce6115b9565b606061271a85613ba6565b905061272e6127276118d1565b8251610e5c565b6127388187611bc3565b606061274261261b565b5090506000612751828461264f565b905060006127618261070a6118d1565b600992909255509a91995090975050505050505050565b620f424090565b61069e8282613bbc565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b606060006127c06118d1565b905060608167ffffffffffffffff811180156127db57600080fd5b50604051908082528060200260200182016040528015612805578160200160208202803683370190505b5090507f00000000000000000000000000000000000000000000000000000000000000008160008151811061283657fe5b6020026020010181815250507f00000000000000000000000000000000000000000000000000000000000000008160018151811061287057fe5b6020026020010181815250506002821115611137577f0000000000000000000000000000000000000000000000000000000000000000816002815181106128b357fe5b6020026020010181815250506003821115611137577f0000000000000000000000000000000000000000000000000000000000000000816003815181106128f657fe5b6020026020010181815250506004821115611137577f00000000000000000000000000000000000000000000000000000000000000008160048151811061293957fe5b6020026020010181815250506005821115611137577f00000000000000000000000000000000000000000000000000000000000000008160058151811061297c57fe5b6020026020010181815250506006821115611137577f0000000000000000000000000000000000000000000000000000000000000000816006815181106129bf57fe5b6020026020010181815250506007821115611137577f000000000000000000000000000000000000000000000000000000000000000081600781518110612a0257fe5b6020026020010181815250506008821115611137577f000000000000000000000000000000000000000000000000000000000000000081600881518110612a4557fe5b6020026020010181815250506009821115611137577f000000000000000000000000000000000000000000000000000000000000000081600981518110612a8857fe5b602002602001018181525050600a821115611137577f000000000000000000000000000000000000000000000000000000000000000081600a81518110612acb57fe5b602002602001018181525050600b821115611137577f000000000000000000000000000000000000000000000000000000000000000081600b81518110612b0e57fe5b602002602001018181525050600c821115611137577f000000000000000000000000000000000000000000000000000000000000000081600c81518110612b5157fe5b602002602001018181525050600d821115611137577f000000000000000000000000000000000000000000000000000000000000000081600d81518110612b9457fe5b602002602001018181525050600e821115611137577f000000000000000000000000000000000000000000000000000000000000000081600e81518110612bd757fe5b602002602001018181525050600f821115611137577f000000000000000000000000000000000000000000000000000000000000000081600f81518110612c1a57fe5b6020026020010181815250506010821115611137577f000000000000000000000000000000000000000000000000000000000000000081601081518110612c5d57fe5b6020026020010181815250506011821115611137577f000000000000000000000000000000000000000000000000000000000000000081601181518110612ca057fe5b6020026020010181815250506012821115611137577f000000000000000000000000000000000000000000000000000000000000000081601281518110612ce357fe5b6020026020010181815250506013821115611137577f0000000000000000000000000000000000000000000000000000000000000000816013815181106115a757fe5b600281511015612d3557610544565b600081600081518110612d4457fe5b602002602001015190506000600190505b8251811015611a26576000838281518110612d6c57fe5b60200260200101519050612d95816001600160a01b0316846001600160a01b03161060656115b9565b9150600101612d55565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612dbe61086a565b6001600160a01b031614158015612dd95750612dd983613c4a565b15612e0157612de661086a565b6001600160a01b0316336001600160a01b031614905061052d565b612e096125a1565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612e3893929190615aad565b60206040518083038186803b158015612e5057600080fd5b505afa158015612e64573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e419190615568565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6000612eea84841115836115b9565b5050900390565b4690565b606080612f006118d1565b67ffffffffffffffff81118015612f1657600080fd5b50604051908082528060200260200182016040528015612f40578160200160208202803683370190505b50905082612f4f579050612f9c565b612f82888781518110612f5e57fe5b6020026020010151888881518110612f7257fe5b6020026020010151878787613c7c565b818781518110612f8e57fe5b602090810291909101015290505b9695505050505050565b60005b612fb16118d1565b81101561300b57612fec848281518110612fc757fe5b6020026020010151848381518110612fdb57fe5b60200260200101518463ffffffff16565b848281518110612ff857fe5b6020908102919091010152600101612fa9565b50505050565b60006060600061302084613b90565b9050600081600381111561303057fe5b141561304b57613041878786613cf4565b9250925050613096565b600181600381111561305957fe5b1415613069576130418785613deb565b600281600381111561307757fe5b14156130895761304187878787613e1d565b613094610150612e88565b505b94509492505050565b60006130ae8484610e98612fa6565b612528828561264f565b60008282026130d2841580611b6b575083858381611b6857fe5b670de0b6b3a764000090049392505050565b6130fb6001600160a01b038316151561019b6115b9565b61310782600083611a26565b6001600160a01b03821660009081526020819052604090205461312d90826101a1612edb565b6001600160a01b0383166000908152602081905260409020556002546131539082613e9a565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90613194908590615aa4565b60405180910390a35050565b6000606060006131af84613b90565b905060018160038111156131bf57fe5b14156131d15761304187878787613ea8565b60028160038111156131df57fe5b14156131f057613041878786613f12565b60038160038111156131fe57fe5b141561320e576130418785613f75565b613094610136612e88565b60006130ae8484610e69612fa6565b600061323782151560046115b9565b826132445750600061052d565b670de0b6b3a76400008381029061325e90858381611ba857fe5b82600182038161326a57fe5b0460010191505061052d565b6000828202613290841580611b6b575083858381611b6857fe5b8061329f57600091505061052d565b670de0b6b3a7640000600019820161326a565b50600090565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561331b57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561337c57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156133dd57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561343e57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561349f57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561350057507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561356157507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156135c257507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561362357507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561368457507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156136e557507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561374657507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156137a757507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561380857507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561386957507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156138ca57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561392b57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561398c57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139ed57507f000000000000000000000000000000000000000000000000000000000000000061072f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156124ab57507f000000000000000000000000000000000000000000000000000000000000000061072f565b6000613a70613a6587670429d069189e00006130b8565b8311156101306115b9565b6000613a7c8784610e69565b90506000613a8a8883613228565b90506000613a988887611b72565b90506000613aa68383613f9a565b9050613abb613ab482613fc6565b89906130b8565b9450505050505b95945050505050565b6000613aed613ae285670429d069189e00006130b8565b8311156101316115b9565b6000613b03613afc8685610e98565b8690613228565b90506000613b118588613228565b90506000613b1f8383613f9a565b90506000613b3582670de0b6b3a7640000610e98565b9050613abb8a82613276565b600080613b4e8484613fec565b90506000613b68613b6183612710613276565b6001610e69565b905080821015613b7d5760009250505061052d565b613b878282610e98565b9250505061052d565b60008180602001905181019061052d9190615713565b606081806020019051810190610e7b91906157d9565b613bc860008383611a26565b600254613bd59082610e69565b6002556001600160a01b038216600090815260208190526040902054613bfb9082610e69565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90613194908590615aa4565b6000613c5c631c74c91760e11b6107f2565b82148061052d5750613c746350dd6ed960e01b6107f2565b909114919050565b6000838311613c8d57506000613ac2565b6000613c998585613228565b90506000613caf670de0b6b3a764000088611b72565b9050613cc3826709b6e64a8ec600006140ed565b91506000613cd18383613f9a565b90506000613ce8613ce183613fc6565b8b906130b8565b9050613abb81876130b8565b60006060613d00611744565b600080613d0c85614104565b91509150613d24613d1b6118d1565b821060646115b9565b600080613d68898481518110613d3657fe5b6020026020010151898581518110613d4a57fe5b602002602001015186613d5b610547565b613d636106a2565b614126565b91509150613d76838261069e565b6060613d806118d1565b67ffffffffffffffff81118015613d9657600080fd5b50604051908082528060200260200182016040528015613dc0578160200160208202803683370190505b50905082818581518110613dd057fe5b60209081029190910101529399939850929650505050505050565b600060606000613dfa846141e2565b90506060613e108683613e0b610547565b6141f8565b9196919550909350505050565b60006060613e29611744565b60606000613e36856142aa565b91509150613e4782516106c46118d1565b613e518287611bc3565b60006060613e708a8a86613e63610547565b613e6b6106a2565b6142c2565b91509150613e828383111560cf6115b9565b613e8b8161440c565b50989197509095505050505050565b6000610e7b83836001612edb565b60006060806000613eb8856142aa565b91509150613ece613ec76118d1565b8351610e5c565b613ed88287611bc3565b60006060613ef78a8a86613eea610547565b613ef26106a2565b614450565b91509150613f048161440c565b613e8b8383101560d06115b9565b60006060600080613f2285614104565b91509150613f31613d1b6118d1565b600080613d68898481518110613f4357fe5b6020026020010151898581518110613f5757fe5b602002602001015186613f68610547565b613f706106a2565b61458a565b600060606000613f84846141e2565b90506060613e108683613f95610547565b614659565b600080613fa78484613fec565b90506000613fba613b6183612710613276565b9050613ac28282610e69565b6000670de0b6b3a76400008210613fde57600061052d565b50670de0b6b3a76400000390565b6000816140025750670de0b6b3a764000061052d565b8261400f5750600061052d565b614020600160ff1b841060066115b9565b82614046770bce5086492111aea88f4bb1ca6bcf584181ea8059f76532841060076115b9565b826000670c7d713b49da0000831380156140675750670f43fc2c04ee000083125b1561409e576000614077846146eb565b9050670de0b6b3a764000080820784020583670de0b6b3a7640000830502019150506140ac565b816140a884614812565b0290505b670de0b6b3a764000090056140e4680238fd42c5cf03ffff1982128015906140dd575068070c1cc73b00c800008213155b60086115b9565b612f9c81614bb2565b6000818310156140fd5781610e7b565b5090919050565b6000808280602001905181019061411b91906157a3565b909590945092505050565b6000808061413e856141388189610e98565b90613228565b90506141576709b6e64a8ec600008210156101326115b9565b600061417561416e670de0b6b3a76400008a611b72565b8390613f9a565b90506000614185613ce183613fc6565b905060006141928a613fc6565b905060006141a08383613276565b905060006141ae8483610e98565b90506141ba828a613276565b96506141d06141c98389610e98565b8290610e69565b97505050505050509550959350505050565b600081806020019051810190610e7b9190615776565b606060006142068484611b72565b90506060855167ffffffffffffffff8111801561422257600080fd5b5060405190808252806020026020018201604052801561424c578160200160208202803683370190505b50905060005b86518110156142a0576142818388838151811061426b57fe5b60200260200101516130b890919063ffffffff16565b82828151811061428d57fe5b6020908102919091010152600101614252565b5095945050505050565b606060008280602001905181019061411b919061572f565b6000606080855167ffffffffffffffff811180156142df57600080fd5b50604051908082528060200260200182016040528015614309578160200160208202803683370190505b5090506000805b89518110156143ce576143698a828151811061432857fe5b60200260200101516141388a848151811061433f57fe5b60200260200101518d858151811061435357fe5b6020026020010151610e9890919063ffffffff16565b83828151811061437557fe5b6020026020010181815250506143c46143bd8a838151811061439357fe5b60200260200101518584815181106143a757fe5b602002602001015161327690919063ffffffff16565b8390610e69565b9150600101614310565b50600060606143e18b8b8b87878c614f90565b9150915060006143fa6143f384613fc6565b8a90613276565b9c919b50909950505050505050505050565b61441981516106c46118d1565b60005b6144246118d1565b81101561069e576144488183838151811061443b57fe5b602002602001015161069e565b60010161441c565b6000606080855167ffffffffffffffff8111801561446d57600080fd5b50604051908082528060200260200182016040528015614497578160200160208202803683370190505b5090506000805b895181101561453f576144f78a82815181106144b657fe5b602002602001015161070f8a84815181106144cd57fe5b60200260200101518d85815181106144e157fe5b6020026020010151610e6990919063ffffffff16565b83828151811061450357fe5b6020026020010181815250506145356143bd8a838151811061452157fe5b602002602001015185848151811061426b57fe5b915060010161449e565b50600060606145528b8b8b87878c61510e565b915091506000670de0b6b3a7640000831161456e5760006143fa565b6143fa61458384670de0b6b3a7640000610e98565b8a906130b8565b6000808061459c856141388189610e69565b90506145b56729a2241af62c00008211156101336115b9565b60006145cc61416e670de0b6b3a76400008a613228565b905060006145ec6145e583670de0b6b3a7640000610e98565b8b90613276565b905060006145f98a613fc6565b905060006146078383613276565b905060006146158483610e98565b9050600061463561462e670de0b6b3a76400008c610e98565b8490613228565b838103985090506146468282610e69565b9850505050505050509550959350505050565b606060006146678484613228565b90506060855167ffffffffffffffff8111801561468357600080fd5b506040519080825280602002602001820160405280156146ad578160200160208202803683370190505b50905060005b86518110156142a0576146cc838883815181106143a757fe5b8282815181106146d857fe5b60209081029190910101526001016146b3565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401906ec097ce7bc90715b34b9f0fffffffff198501028161472757fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a764000082121561484f57614845826ec097ce7bc90715b34b9f10000000008161483f57fe5b05614812565b600003905061072f565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c000000000000083126148a057770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126148d8576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312614920576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a700831261495b576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261499257693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e283126149c957690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126149fe5768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312614a2957680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614a5e576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614a93576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614ac7576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312614afb576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d631000008086030281614b1e57fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000614be1680238fd42c5cf03ffff198312158015614bda575068070c1cc73b00c800008313155b60096115b9565b6000821215614c1557614bf682600003614bb2565b6ec097ce7bc90715b34b9f100000000081614c0d57fe5b05905061072f565b60006806f05b59d3b20000008312614c5557506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000614c8b565b6803782dace9d90000008312614c8757506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380614c8b565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614cdb5768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614d17576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412614d5157682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412614d8b576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614dc457680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614dfd5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b18800008412614e36576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614e6f5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60006060855167ffffffffffffffff81118015614fac57600080fd5b50604051908082528060200260200182016040528015614fd6578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015615102576000868281518110614ffe57fe5b602002602001015186111561508457600061502761501b88613fc6565b8c858151811061426b57fe5b9050600061503b828b868151811061435357fe5b9050600061505461259a670de0b6b3a76400008a610e98565b905081810386868151811061506557fe5b602090810291909101015261507a8382610e69565b935050505061509b565b87828151811061509057fe5b602002602001015190505b60006150c48b84815181106150ac57fe5b602002602001015161070f848e878151811061435357fe5b90506150f66150ef8b85815181106150d857fe5b602002602001015183613b4190919063ffffffff16565b86906130b8565b94505050600101614fe7565b50965096945050505050565b60006060855167ffffffffffffffff8111801561512a57600080fd5b50604051908082528060200260200182016040528015615154578160200160208202803683370190505b509050670de0b6b3a7640000915060005b88518110156151025760008587838151811061517d57fe5b602002602001015111156151fd5760006151a261501b88670de0b6b3a7640000610e98565b905060006151b6828b868151811061435357fe5b905060006151c48289613276565b90506151da6151d38383610e98565b8490610e69565b9350808686815181106151e957fe5b602002602001018181525050505050615214565b87828151811061520957fe5b602002602001015190505b600061523d8b848151811061522557fe5b602002602001015161070f848e87815181106144e157fe5b90506152516150ef8b85815181106150d857fe5b94505050600101615165565b803561072f81615bf6565b600082601f830112615278578081fd5b815161528b61528682615bd8565b615bb4565b8181529150602080830190848101818402860182018710156152ac57600080fd5b60005b848110156152cb578151845292820192908201906001016152af565b505050505092915050565b600082601f8301126152e6578081fd5b813567ffffffffffffffff8111156152fa57fe5b61530d601f8201601f1916602001615bb4565b915080825283602082850101111561532457600080fd5b8060208401602084013760009082016020015292915050565b80356002811061072f57600080fd5b60006020828403121561535d578081fd5b8135610e7b81615bf6565b6000806040838503121561537a578081fd5b823561538581615bf6565b9150602083013561539581615bf6565b809150509250929050565b6000806000606084860312156153b4578081fd5b83356153bf81615bf6565b925060208401356153cf81615bf6565b929592945050506040919091013590565b600080600080600080600060e0888a0312156153fa578283fd5b873561540581615bf6565b9650602088013561541581615bf6565b95506040880135945060608801359350608088013560ff81168114615438578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215615467578182fd5b823561547281615bf6565b946020939093013593505050565b600080600060608486031215615494578081fd5b835167ffffffffffffffff808211156154ab578283fd5b818601915086601f8301126154be578283fd5b81516154cc61528682615bd8565b80828252602080830192508086018b8283870289010111156154ec578788fd5b8796505b8487101561551757805161550381615bf6565b8452600196909601959281019281016154f0565b50890151909750935050508082111561552e578283fd5b5061553b86828701615268565b925050604084015190509250925092565b60006020828403121561555d578081fd5b8135610e7b81615c0b565b600060208284031215615579578081fd5b8151610e7b81615c0b565b600080600080600080600060e0888a03121561559e578081fd5b873596506020808901356155b181615bf6565b965060408901356155c181615bf6565b9550606089013567ffffffffffffffff808211156155dd578384fd5b818b0191508b601f8301126155f0578384fd5b81356155fe61528682615bd8565b8082825285820191508585018f87888602880101111561561c578788fd5b8795505b8386101561563e578035835260019590950194918601918601615620565b509850505060808b0135955060a08b0135945060c08b0135925080831115615664578384fd5b50506156728a828b016152d6565b91505092959891949750929550565b600060208284031215615692578081fd5b81356001600160e01b031981168114610e7b578182fd5b6000602082840312156156ba578081fd5b8151610e7b81615bf6565b600080604083850312156156d7578182fd5b82356156e281615bf6565b9150602083013567ffffffffffffffff8111156156fd578182fd5b615709858286016152d6565b9150509250929050565b600060208284031215615724578081fd5b8151610e7b81615c19565b600080600060608486031215615743578081fd5b835161574e81615c19565b602085015190935067ffffffffffffffff81111561576a578182fd5b61553b86828701615268565b60008060408385031215615788578182fd5b825161579381615c19565b6020939093015192949293505050565b6000806000606084860312156157b7578081fd5b83516157c281615c19565b602085015160409095015190969495509392505050565b600080604083850312156157eb578182fd5b82516157f681615c19565b602084015190925067ffffffffffffffff811115615812578182fd5b61570985828601615268565b600080600060608486031215615832578081fd5b833567ffffffffffffffff80821115615849578283fd5b818601915061012080838903121561585f578384fd5b61586881615bb4565b90506158738361533d565b81526158816020840161525d565b60208201526158926040840161525d565b6040820152606083013560608201526080830135608082015260a083013560a08201526158c160c0840161525d565b60c08201526158d260e0840161525d565b60e082015261010080840135838111156158ea578586fd5b6158f68a8287016152d6565b9183019190915250976020870135975060409096013595945050505050565b600060208284031215615926578081fd5b5035919050565b60008060008060808587031215615942578182fd5b845193506020850151925060408501519150606085015161596281615bf6565b939692955090935050565b6000815180845260208085019450808401835b8381101561599c57815187529582019590820190600101615980565b509495945050505050565b60008151808452815b818110156159cc576020818501810151868301820152016159b0565b818111156159dd5782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b600060208252610e7b602083018461596d565b600060408252615a6f604083018561596d565b8281036020840152613ac2818561596d565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b60008382526040602083015261252860408301846159a7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b600060208252610e7b60208301846159a7565b600083825260406020830152612528604083018461596d565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715615bd057fe5b604052919050565b600067ffffffffffffffff821115615bec57fe5b5060209081020190565b6001600160a01b038116811461054457600080fd5b801515811461054457600080fd5b6004811061054457600080fdfea2646970667358221220fe6eb118429b0c1120e5d7fff7541ad238ff88683ed641557dc044ab56ca715864736f6c63430007030033000000000000000000000000d25e02047e76b688445ab154785f2642c6fe3f73
Deployed ByteCode
0x608060405234801561001057600080fd5b50600436106100715760003560e01c80636634b753116100505780636634b753146100c05780638d928af8146100e0578063fbce0393146100f557610071565b8062c194db14610076578063174481fa146100945780632da47c40146100aa575b600080fd5b61007e610108565b60405161008b919061084e565b60405180910390f35b61009c610127565b60405161008b929190610829565b6100b261016d565b60405161008b92919061092e565b6100d36100ce36600461066e565b6101d7565b60405161008b9190610843565b6100e86101f9565b60405161008b9190610815565b6100e861010336600461068a565b61021d565b606061012260405180602001604052806000815250610310565b905090565b7f0000000000000000000000001203d03422e877d2521ab017392b7d3ee7035ee57f0000000000000000000000001b51709c368707c87ffaf932159a55cf34d3a3d89091565b600080427f000000000000000000000000000000000000000000000000000000006304bd6d8110156101c957807f000000000000000000000000000000000000000000000000000000006304bd6d03925062278d0091506101d2565b60009250600091505b509091565b6001600160a01b03811660009081526020819052604090205460ff165b919050565b7f000000000000000000000000d25e02047e76b688445ab154785f2642c6fe3f7390565b600080600061022a61016d565b915091506102b16102396101f9565b8a8a8a8a8c5167ffffffffffffffff8111801561025557600080fd5b5060405190808252806020026020018201604052801561027f578160200160208202803683370190505b508b89898d60405160200161029d9a99989796959493929190610861565b6040516020818303038152906040526103e9565b9998505050505050505050565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f0908452915061030a6001600160a01b03831615156101ac610449565b50919050565b8051604080517f0000000000000000000000000000000000000000000000000000000000003b7e7f0000000000000000000000000000000000000000000000000000000000003b7d818101858101848101602090810190965280855293957f0000000000000000000000001203d03422e877d2521ab017392b7d3ee7035ee59592947f0000000000000000000000001b51709c368707c87ffaf932159a55cf34d3a3d894938801866000828a3c846000888301883c50602089810190898501016103db81838661045b565b505050505050505050919050565b6000806103f583610499565b6001600160a01b038116600081815260208190526040808220805460ff191660011790555192935090917f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a292915050565b8161045757610457816104d4565b5050565b5b6020811061047b578151835260209283019290910190601f190161045c565b905182516020929092036101000a6000190180199091169116179052565b600060606104a683610310565b905060008151602083016000f090506001600160a01b0381166104cd573d6000803e3d6000fd5b9392505050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b80356101f48161097e565b600082601f830112610542578081fd5b813561055561055082610960565b61093c565b81815291506020808301908481018184028601820187101561057657600080fd5b60005b8481101561059e57813561058c8161097e565b84529282019290820190600101610579565b505050505092915050565b600082601f8301126105b9578081fd5b81356105c761055082610960565b8181529150602080830190848101818402860182018710156105e857600080fd5b60005b8481101561059e578135845292820192908201906001016105eb565b600082601f830112610617578081fd5b813567ffffffffffffffff81111561062b57fe5b61063e601f8201601f191660200161093c565b915080825283602082850101111561065557600080fd5b8060208401602084013760009082016020015292915050565b60006020828403121561067f578081fd5b81356104cd8161097e565b60008060008060008060c087890312156106a2578182fd5b863567ffffffffffffffff808211156106b9578384fd5b6106c58a838b01610607565b975060208901359150808211156106da578384fd5b6106e68a838b01610607565b965060408901359150808211156106fb578384fd5b6107078a838b01610532565b9550606089013591508082111561071c578384fd5b5061072989828a016105a9565b9350506080870135915061073f60a08801610527565b90509295509295509295565b6001600160a01b03169052565b6000815180845260208085019450808401835b838110156107905781516001600160a01b03168752958201959082019060010161076b565b509495945050505050565b6000815180845260208085019450808401835b83811015610790578151875295820195908201906001016107ae565b60008151808452815b818110156107ef576020818501810151868301820152016107d3565b818111156108005782602083870101525b50601f01601f19169290920160200192915050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b901515815260200190565b6000602082526104cd60208301846107ca565b60006101406001600160a01b03808e168452602082818601526108868386018f6107ca565b9250848303604086015261089a838e6107ca565b85810360608701528c51808252828e01945090820190855b818110156108d05785518516835294830194918301916001016108b2565b505085810360808701526108e4818d61079b565b935050505082810360a08401526108fb8189610758565b9150508560c08301528460e08301528361010083015261091f61012083018461074b565b9b9a5050505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff8111828210171561095857fe5b604052919050565b600067ffffffffffffffff82111561097457fe5b5060209081020190565b6001600160a01b038116811461099357600080fd5b5056fea26469706673582212203c2bc286f0670d0a20e77c2ad39f4b208e28d2f017a0e05838956e688516e42364736f6c63430007030033